Question 4.4.5.6: Writing expressions as a Single logarithm Write each of the ......

Writing expressions as a Single logarithm

Write each of the following as a single logarithm.

(a) \log_{a}7\,+\,4\log_{a}3\,                                  (b) {\frac{2}{3}}\ln8-\ln\left({{5}}^{2}-1\right)

(c) \log_{a}x\,+\,\log_{a}9\,+\,\log_{a}(x^{2}\,+\,1\,){-}\,\log_{a}5

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) \log_{a}7\,+\,4\log_{a}3\,=\,\log_{a}7\,+\,\log_{a}3^{4}                   r\log_{a}M=\log_{a}M^{r}

=\log_{a}7\ +\log_{a}81

=\log_{a}(7\cdot81)                                          \log_{a}M+\log_{a}N=\textstyle\log_{a}(M\cdot N)

=\log_{a}567

(b) {\frac{2}{3}}\mathrm{ln}\,8-\,\mathrm{ln}\left(5^{2}-1\right)\,=\,\mathrm{ln}\,8^{2/3}\,-\,\mathrm{ln}\left(25\,-\,1\right)                             r\log_{a}M=\log_{a}M^{r}

=\,\ln 4 – \ln 24                        8^{2/3}=(~{\sqrt[3]{8}})^{2}=2^{2}=4

=\ln\!\left({\frac{4}{24}}\right)                    \log_{a}M-\log_{a}N=\log_{a}\!\left(\frac{M}{N}\right)

{{=\ln\!\left({\frac{1}{6}}\right)}}

{{=\,\ln1\,-\,\ln6}} \\ =-\ln6                    \ln 1=0

(c) \log_{a}x\,+\,\log_{a}9\,+\,\log_{a}(x^{2}\,+\,1\,)\,-\,\log_{a}5 = \log_{a}(9x)+\log_{a}(x^{2}+1)-\log_{a}5

=\log_{a}[9x(x^{2}+1)\;]\ -\log_{a}5 \\=\log_{a}\!\left[{\frac{9x(x^{2}+1)}{5}}\right]

Related Answered Questions

Question: 4.4.8.6

Verified Answer:

(a) The decay rate is |b|\,=\,|-0.0581|[/la...
Question: 4.4.8.5

Verified Answer:

(a) As t\rightarrow\infty.\;e^{-0.37t}\righ...
Question: 4.4.8.4

Verified Answer:

(a) Using formula (4) with T = 30 and u_{0}...
Question: 4.4.8.3

Verified Answer:

Using formula (3), the amount A of 14 present at t...
Question: 4.4.8.2

Verified Answer:

(a) Using formula (2), the number N of cells at ti...
Question: 4.4.8.1

Verified Answer:

(a) The intial amount of bacteria, N_{0}[/...
Question: 4.4.9.3

Verified Answer:

(a) See Figure 54 for a scatter diagram of the dat...
Question: 4.4.5.8

Verified Answer:

(a) \log_{5}89={\frac{\log\,89}{\log5}}\app...