A balanced three-phase wye-connected generator delivers power to a balanced three-phase delta-connected load through a line as shown in Fig. 9.21. Line impedance, per phase load impedance and generator voltage are Z_{L}=2|\underline{{{15}}}^{o}\Omega, Z_{Δ}=12|\underline30^{\circ}\Omega and 230 V rms, respectively. For ABC phase sequence, calculate the
line currents and phase currents.
Converting delta-connected load to a wye-connected load yields,
Z_{y}={\frac{Z_{\Delta}}{3}}={\frac{12|\underline{30^{\circ}}}{3}}=4|\underline{30^{\circ}}\Omega (9.76)
The line currents can be calculated as,
I_{\mathrm{Aa}}={\frac{\nu_{\mathrm{an}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{0^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-25.01^{\circ}}\mathrm{A} (9.77)
I_{\mathrm{Bb}}={\frac{\nu_{\mathrm{bn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{-120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-145.01^{\circ}}\mathrm{A} (9.78)
I_{\mathrm{Cc}}={\frac{\nu_{\mathrm{cn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{94.99^{\circ}}\mathrm{A} (9.79)
The line voltage is calculated as,
V_{\mathrm{AB}}=\sqrt{3}\nu_{\mathrm{an}}\big\vert\underline{{{\mathrm{30}}}}^{\circ}=\sqrt{3}\times230|\underline{30^{\circ}}=398.37|\underline{30^{\circ}}\mathrm{{V}} (9.80)
Applying KVL between lines A and B of the circuit in Fig. 9.21 yields,
V_{\mathrm{ab}}=V_{\mathrm{AB}}-I_{\mathrm{Aa}}Z_{L}+I_{\mathrm{Bb}}Z_{L} (9.81)
V_{\mathrm{ab}}=398.37|\underline{30^{\circ}}+2|\underline{15^{\circ}}(38.63|\underline{-145.01^{\circ}}-38.63|\underline{-25.01^{\circ}})=267.60|\underline{35}^{\circ}V (9.82)
The phase current is calculated as,
I_{\mathrm{ab}}=\frac{V_{\mathrm{ab}}}{Z_{Δ}}=\frac{267.60|\underline{35^{\circ}}}{12|\underline{30^{\circ}}}=22.3|\underline{5^{\circ}}\,{\mathrm{A}} (9.83)
Other phase currents can be written as,
I_{bc}=I_{ab}|\underline{-120}^{\circ}=22.3|\underline{5^{\circ}-120^{\circ}}=22.33|\underline{-155}^{\circ}A (9.84)
I_{ca}=I_{ab}|\underline{120}^{\circ}=22.3|\underline{5^{\circ}+120^{\circ}}=22.33|\underline{125}^{\circ}A (9.85)