Question 9.3: A balanced wye-connected generator delivers power to the bal......

A balanced wye-connected generator delivers power to the balanced wye-connected load as shown in Fig. 9.11. The line voltage of the generator is 200 V rms. Determine the line currents for abc phase sequence.

9.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For abc phase sequence, the phase voltages are,

V_{\mathrm{an}}={\frac{V_{\mathrm{L}}}{\sqrt{3}}}|\underline{-30^{\circ}}={\frac{200}{\sqrt{3}}}|\underline{-30^{\circ}}=115.47|\underline{-30^{\circ}} V     (9.39)

V_{\mathrm{bn}}=115.47[{\underline{{-150}}}^{\circ}\mathbf{V}     (9.40)

V_{\mathrm{cn}}=115.47|\underline{90^{\circ}}V     (9.41)

The total impedance is,

Z_{t}=0.03+j5+5|\underline{30^{\circ}}=8.68|\underline{59.83^{\circ}}\Omega     (9.42)

The line currents are calculated as,

I_{\mathrm{aA}}={\frac{V_{\mathrm{an}}}{Z_{t}}}={\frac{115.47|\underline{-30^{\circ}}}{8.68|\underline{59.83^{\circ}}}}=13.30|\underline{-89.83^{\circ}}\,\mathrm{A}     (9.43)

I_{\mathrm{bB}}={\frac{V_{\mathrm{bn}}}{Z_{t}}}={\frac{115.47|\underline{-150^{\circ}}}{8.68|\underline{59.83^{\circ}}}}=13.30|\underline{150.17^{\circ}}\,\mathrm{A}     (9.44)

I_{\mathrm{bB}}={\frac{V_{\mathrm{bn}}}{Z_{t}}}={\frac{115.47|\underline{90^{\circ}}}{8.68|\underline{59.83^{\circ}}}}=13.30|\underline{30.17^{\circ}}\,\mathrm{A}     (9.45)

Related Answered Questions

Question: 9.1

Verified Answer:

The phase voltage for line a is, V_{\mathrm...