(a) Basing the calculation on the flexibility matrix, use the matrix iteration method to find the eigenvalue and eigenvector of the lowest frequency mode of the 3-DOF system of Example 7.1.
(b) Indicate how the second and third modes can be found.
Part (a):
Although we intend to base the calculation on the flexibility matrix, [K]^{-1}, suppose for a moment that the homogeneous equations of motion, in terms of the stiffness matrix, [K], are
[M]\left\{\ddot{z}\right\} + [K]\left\{z\right\} = \left\{0\right\} (A)
Substituting \left\{z\right\} = \left\{\overline{z} \right\} e^{\mathrm{i}\omega t} in the usual way:
(- \omega^{2} [M] + [K])\left\{\overline{z} \right\} = 0 (B)
Pre-multiplying by [K]^{-1},
– \omega^{2} [K]^{-1} [M] \left\{\overline{z} \right\} + [K]^{-1} [K] \left\{\overline{z} \right\} = 0 (C)
leads to a standard form
[\underline{\underline{A}}] \left\{\overline{z} \right\} = \underline{\lambda} \left\{\overline{z} \right\} (D)
where
[\underline{\underline{A}}] = [K]^{-1} [M] \mathrm{and} \underline{\lambda} = \frac{1}{\omega^{2}}The flexibility matrix [K]^{-1} for the same system was derived in Example 1.4 as:
[K]^{-1} = \begin{bmatrix} 1/k_{1} & 1/k_{1} & 1/k_{1} \\ 1/k_{1} & (1/k_{1} + 1/k_{2}) & (1/k_{1} + 1/k_{2}) \\ 1/k_{1} & (1/k_{1} + 1/k_{2}) & (1/k_{1} + 1/k_{2} + 1/k_{3}) \end{bmatrix} (E)
Inserting the numerical values, the matrices [M] , [K]^{-1} \mathrm{and} [\underline{\underline{A}}] become
[M] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, [K]^{-1} = 10^{-3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1.5 & 1.5 \\ 1 & 1.5 & 2.5 \end{bmatrix}, [\underline{\underline{A}}] = [K]^{-1} [M] = 10^{-3} \begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}Equation (D), to be solved by matrix iteration, is then,
\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} (F)
where
\hat{\lambda} = (10^{3} \underline{\lambda}) \mathrm{and} \underline{\lambda} = \frac{1}{\omega^{2}}To find the first eigenvector \left\{\overline{z}\right\}_{1} and first scaled eigenvalue, \hat{\lambda}_{1}, a trial vector, \left\{\overline{z}\right\}, say,
\left\{\overline{z}\right\} = \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \begin{Bmatrix} 0.4 \\ 0.6 \\ 1.0 \end{Bmatrix} (G)
is inserted on the left side of Eq. (F). The equation is then evaluated with this assumption, normalizing the resulting vector by dividing by the largest element:
\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{Bmatrix} 0.4 \\ 0.6 \\ 1 \end{Bmatrix} = \begin{Bmatrix} 3.4 \\ 4.7 \\ 6.7 \end{Bmatrix} = 6.7\begin{Bmatrix} 0.5074 \\ 0.7014 \\ 1 \end{Bmatrix} (H)
The process is repeated, using the normalized column on the right in place of the trial vector on the left. After four such repeats, we have
\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{Bmatrix} 0.5292 \\ 0.7198 \\ 1 \end{Bmatrix} = \begin{Bmatrix} 3.7782 \\ 5.1381 \\ 7.1381 \end{Bmatrix} = 7.1381 \begin{Bmatrix} 0.5293 \\ 0.7198 \\ 1 \end{Bmatrix} (I)
The final vector on the right is now seen to agree with the first eigenvector from Example 7.1 by the Gaussian elimination method, to four significant figures.
The root \hat{\lambda} = 7.1381 = 10^{3} \underline{\lambda} = 10^{3} /\omega^{2} gives ω = 11.83 rad/s agreeing with the result of Example 7.1.
Part(b):
To find the second eigenvalue and eigenvector, the first eigenvector, already found, must be completely removed from the dynamic matrix [\underline{\underline{A}}]. This can be achieved by using the orthogonality relationship, Eq. (6.54):
\left\{\overline{z}\right\}^{T}_{j} [M] \left\{\overline{z}\right\}_{i} = 0 (J)
At some point in the iteration procedure, the impure vector \left\{\overline{z}\right\} must consist of a linear combination of the three pure eigenvectors being sought
\left\{\overline{z} \right\} = C_{1} \left\{\overline{z} \right\}_{1} + C_{2} \left\{\overline{z} \right\}_{2} + C_{3} \left\{\overline{z} \right\}_{3} (K)
where C_{1},C_{2} \mathrm{and} C_{3} are constants. Pre-multiplying Eq. (K) by \left\{\overline{z}\right\}^{T}_{1} [M]:
\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = C_{1} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1} + C_{2} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{2} + C_{3} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{3} (L)
Now due to the orthogonality relationship for eigenvectors, Eq. (J), the last two terms in Eq. (L) must be zero, and
\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = C_{1} \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1} (M)
To produce a vector \left\{\overline{z}\right\} free from \left\{\overline{z}\right\}_{1} we can now set C_{1} = 0 , and since clearly \left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\}_{1} ≠ 0 , it must be true that
\left\{\overline{z}\right\}^{T}_{1} [M] \left\{\overline{z}\right\} = 0 (N)
or written out, using the notation:
\left\{\overline{z}\right\}_{1} = \begin{Bmatrix} (\overline{z}_{1})_{1} \\ (\overline{z}_{2})_{1} \\ (\overline{z}_{3})_{1}\end{Bmatrix} \mathrm{and} \left\{\overline{z} \right\} = \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} : \\ (\overline{z}_{1} )_{1} m_{1}\overline{z} _{1} + (\overline{z}_{2} )_{1} m_{2}\overline{z} _{2} + (\overline{z}_{3} )_{1} m_{3}\overline{z} _{3} = 0 (O) \\ \mathrm{from which} \\ \overline{z}_{1} = s_{1} \overline{z}_{2} + s_{2} \overline{z}_{3} (P) \\ \mathrm{where} \\ s_{1} = \frac{-m_{2}(\overline{z}_{2})_{1}}{m_{1}(\overline{z}_{1})_{1}} = \frac{-1(0.7198)}{2(0.5293)} = – 0.6799 (Q_{1}) \\ \mathrm{and} \\ s_{2} = \frac{-m_{3}(\overline{z}_{3})_{1}}{m_{1}(\overline{z}_{1})_{1}} = \frac{-2(1)}{2(0.5293)} = – 1.8892 (Q_{2})The known values of s_{1} \mathrm{and} s_{2} can now be incorporated into a sweeping matrix, [S], where:
[S] = \begin{bmatrix} 0 & s_{1} & s_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -0.6799 & -1.8892 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (R)
This is incorporated into the original iteration equation, Eq. (D), as follows:
[\underline{\underline{A}}] [S] \left\{\overline{z} \right\} = \underline{\lambda} \left\{\overline{z} \right\} (S)
and Eq. (F) becomes
\begin{bmatrix} 2 & 1 & 2 \\ 2 & 1.5 & 3 \\ 2 & 1.5 & 5 \end{bmatrix}\begin{bmatrix} 0 & -0.6799 & -1.8892 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} (T) \\ \mathrm{or} \\ \begin{bmatrix} 0 & -0.3598 & 5.7784 \\ 0 & 0.1402 & -0.7784 \\ 0 & 0.1402 & 1.2216 \end{bmatrix} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} = \hat{\lambda} \begin{Bmatrix} \overline{z}_{1} \\ \overline{z}_{2} \\ \overline{z}_{3} \end{Bmatrix} (U)This is then solved for the second eigenvector and second eigenvalue, in precisely the same way as before, using an estimated vector to start the process.