A bituminous coal is burned in a boiler furnace under the following conditions:
• Coal composition (in mass fractions): C = 0.78, H = 0.07, O = 0.04, A = 0.06, and M = 0.05
• Lower heating value of coal, LHV = 31.4 MJ/kg
• Oxyfuel stoichiometric combustion of coal in pure oxygen
• Conventional stoichiometric combustion of coal in air
Determine (a) the combustion oxygen mass and volume, (b) the flue gas volume and composition, and (c) the adiabatic combustion temperature.
Density ρ: 1.429 kg/m³ (oxygen) and 1.293 kg/m³ (air); specific heat of flue gas: c_{pg} = 1.34 kJ/m³K.
Oxyfuel Stoichiometric Combustion of Coal in Pure Oxygen
1. Mass and volume of oxygen required for stoichiometric combustion of 1 kg coal
m_{O_{2}}\,=\,2.67C+8\mathrm{H- O}=2.67\times0.78+8\times0.07-0.04=2.6\,\mathrm{kg/kg}V_{\mathrm{O_{2}}}\,=\,m_{\mathrm{O_{2}}}/{\bf r}_{\mathrm{O_{2}}}\,=\,2.6/1.429\,=\,1.82\,{\mathrm{m}}^{3}/\mathrm{ kg}_{\mathrm{}}
2. Flue gas volume and composition
V_{C O_{2}}\,=\,1.867\,\mathrm{C}\,=\,1.867\times0.78\,=\,1.46\,\mathrm{m}^{3}/\mathrm{kg}V_{\mathrm{H_{2}O}}\,=\,1\,1.11\,\mathrm{H}+1.24\,M=\,1\,1.11\times0.\mathbf{0}7+1.24\times0.05\,=\,0.84\,{\mathrm{m}}^{3}/{\mathrm{kg}}
V_{\mathrm{g}}=V_{\mathrm{CO_{2}}}+V_{\mathrm{H_{2}O}}=1.46+0.84=2.3\,\mathrm{m}^{3}/\mathrm{kg}
3. Molar fractions of flue gas components
r_{\mathrm{CO_{2}}}\,=\,V_{\mathrm{CO_{2}}}/V_{\mathrm{g}}\,=\,1.46/2.3\,=\,0.634{\mathrm{~and~}}r_{H_{2}O}\,=\,V_{\mathrm{H_{2}O}}/V_{\mathrm{g}}\,=\,0.84/2.3\,=\,0.36\mathbf{6}4. Ignoring sensible heat of oxygen and fuel, adiabatic combustion temperature (see Equation 2.50)
t_{\mathrm{ad}}=\mathrm{LH}\mathrm{V}/(V_{\mathrm{g}}\mathbf{r}{_{\mathrm{g}}}c_{\mathrm{pg}})=\mathrm{LH}\mathrm{V}/(V_{\mathrm{g}}c_{\mathrm{pg}}^{\prime})~~~^{\circ}\mathrm{C} (2.50)
t_{\mathrm{ad}}=\mathrm{LHV}{ {}}/{( \mathrm{V}_{g}\,c_{pg}})=31,400/(2.3\times1.34)=10,188^{\circ}CConventional Stoichiometric Combustion of Coal in Air
Stoichiometric volume of air requirement per unit mass of fuel
V_{\mathrm{air}}=V_{O_{2}}/0.21=1.82/0.21=8.67\,{\mathrm{m}}^{3}/{\mathrm{kg}}1. Flue gas volume and composition
V_{C O_{2}}\,=\,1.46\,{\mathrm{m}}^{3}/{\mathrm{kg}},\;V_{\mathrm{H_{2}O}}\,=\,0.84\,{\mathrm{m}}^{3}/{\mathrm{kg}},\;V_{\mathrm{N_{2}}}\,=\,0.79,V_{\mathrm{air}}\,=\,0.79\times8.67\,=\,6.85\,{\mathrm{m}}^{3}/{\mathrm{kg}}
V_{\mathrm{g}}\,=\,V_{\mathrm{CO_{2}}}\,+\,V_{\mathrm{H_{2}O}}\,+\,V_{\mathrm{N_{2}}}\,=\,1.46\,+\,0.84\,+\,6.85\,=\,9.15\,\mathrm{m^{3}/kg}
2. Molar fractions of flue gas components (in % by volume)
r_{\mathrm{CO_{2}}}\,=\,1.46/9.15=0.159,\,r_{\mathrm{H_{2}O}}\,=\,0.84/9.15=0.092,r_{N_{2}}=6.85/9.15=\mathbf{0}.749
3. Ignoring sensible heat of air and fuel, adiabatic combustion temperature
t_{\mathrm{ad}}=\mathrm{LHV}/(V_{\mathrm{g}}\,c_{\mathrm{pg}})=31,400/(9.15\times1.34)=2561^{\circ}CCalculation results for bituminous coal are summarized in Table 12.1.
Example 12.2 presents a comparison of oxyfuel combustion with conventional combustion of natural gas.
TABLE 12.1 Flue Gas Volume and Composition and Adiabatic Combustion Temperature for Stoichiometric Oxyfuel and Conventional Combustion of Coal (Example 12.1) |
|||||
V_{\mathrm{{g}}}\left(\mathrm{m}^{3}{/\mathrm{Kg}}\right) | r_{\mathrm{CO}_{2}}\,(\operatorname{m}^{3}/\operatorname{m}^{3}) | r_{H_{2}O}\ ({\mathrm{m}}^{3}/{\mathrm{m}}^{3}) | r_{N_{2}}\left({\mathrm{m}}^{3}/{\mathrm{m}}^{3}\right) | t_{\mathrm{ad}}\left(^{\circ}\mathrm{C}\right) | |
Oxyfuel combustion | 2.3 | 0.634 | 0.366 | 0 | 10,188 |
Conventional combustion | 9.15 | 0.159 | 0.092 | 0.749 | 2561 |