A centrifugal pump is supported on a rigid foundation of mass m_{2} through isolator springs of stiffness k_{1} . This centrifugal pump has an unbalance of me. The 2-dof system is shown in Figure 4E5.
If the soil stiffness and damping are, respectively, k_{2} and c_{2} , find the displacements of the pump and foundation for the system in which m = 0.25 kg, e = 0.1525 m (or 15.25 cm), k_{1} = 230 MN/m, k_{2} = 115 MN/m, m_{1} = 364 kg, m_{2} = 909 kg, c_{2} = 0.25 MNs/m, and the speed of the pump is 1200 rpm.
a. Given parameters
Given that the speed of the pump is 1200 rpm, the applied frequency ω =2 π(1200)/60 rad/s = 125.66 rad/s.
The applied force due to unbalance,
f_{1} = meω²sinωt
= 0.25 (0.1525) (125.66)² sin 125.66 tN
= 602 sin 125.66 tN
The stiffness of the isolator springs, k_{1} = 230 MN/m = 2.3 × 10^{8} N/m.
The stiffness of the soil, k_{2} = 115 MN/m = 1.15 × 10^{8} N/m.
The mass of centrifugal pump, m_{1} = 364 kg, and the mass of the foundation, m_{2} = 909 kg.
The damping coefficient of soil, c_{2} = 0.25 MNs/m = 0.25 × 10^{6} Ns/m.
b. Equations of motion
Let x_{1} and x_{2} be the absolute equilibrium vertical displacements of the centrifugal pump (not including the unbalance mass m) and foundation, respectively.
With reference to Figure 4E5c, the vertical displacement of m is x_{1} + e sin ωt. With reference to this equation and the FBD in Figure 4E5d, by applying Newton’s second law of motion for the centrifugal pump of mass m_{1} and the unbalance mass m, one has
Re-arranging terms, it becomes
( m_{1} + m ) \ddot{ x_{1}} + k_{1} x_{1} − k_{1} x_{2} = f_{1} = F_{1} sinωt, F_{1} = meω² .
As m is much smaller than m_{1} , one can simply write
m_{1} \ddot{ x_{1}} + k_{1} x_{1} − k_{1} x_{2} = f_{1} = F_{1} sinωt .Similarly, applying Newton’s second law of motion for the foundation m_{2} , the equation of motion is given by
m_{2} \ddot{ x_{2}} = − c_{2} \dot{x_{2}} − k_{2} x_{2} + k_{1} (x_{1} − x_{2}) .After re-arranging terms, it leads to
m_{2} \ddot{ x_{2}} + c_{2} \dot{x_{2}} − k_{1} x_{1} + x_{2} (k_{1} + k_{2} ) = 0 .For subsequent analysis, one can express the two equations of motion in matrix form.
Thus, the above two equations of motion can be written as
\begin{bmatrix} m_{1} & 0 \\ 0 & m_{2} \end{bmatrix} \begin{pmatrix} \ddot{ x_{1}}\\ \ddot{ x_{2}} \end{pmatrix} + \begin{pmatrix}0 & 0 \\ 0 & c_{2} \end{pmatrix} \begin{pmatrix} \dot{ x_{1}}\\ \dot{ x_{2}} \end{pmatrix} + \begin{bmatrix} k_{1} & – k_{1} \\ – k_{1} & k_{22} \end{bmatrix} \begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix} = \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} sinωt (i)
in which k_{22} = k_{1} + k_{2} .
c. Solution for responses
For convenience, one can write sin ωt as Im \left\{ e^{iωt} \right\} such that x_{i} = X_{i} sin ωt, i = 1, 2, can be written as
x_{i} = Im \left\{ X_{i} e^{iωt} \right\} ,
where Im{.} denotes the imaginary part of the enclosing complex variable.
Without loss of generality, one can disregard Im{.} for the time being so that the displacements can be written as x_{i} = X_{i} e^{iωt} . Then, the velocity and acceleration are given by \dot{x_{i}} = iωX_{i} e^{iωt} , \ddot{x_{i}} = − ω²X_{i} e^{iωt} .
Substituting the above expressions into Equation (i) and canceling e^{iωt} on both sides of the resulting matrix equation of motion, one has
\begin{bmatrix} − ω²m_{1} & 0 \\ 0 & − ω² m_{2} \end{bmatrix} \begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & iωc_{2} \end{pmatrix} \begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} + \begin{bmatrix} k_{1} & – k_{1} \\ – k_{1} & k_{22} \end{bmatrix} \begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} = \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} .
Upon simplification, one arrives at
\begin{bmatrix} k_{1} − ω²m_{1} & – k_{1} \\ – k_{1} & k_{1} + k_{2} − ω² m_{2} + iωc_{2} \end{bmatrix} \begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} = \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} . (ii)
This is identical in form to Equation (4.18). Thus, one has
\begin{bmatrix}( k_{11} − m_{1}ω² ) & k_{12} \\ k_{21} & ( k_{22} − m_{2}ω² ) \end{bmatrix} \begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} = \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} (4.18)
[Z (ω)] = \begin{bmatrix} k_{1} − ω²m_{1} & – k_{1} \\ – k_{1} & k_{1} + k_{2} − ω² m_{2} + iωc_{2} \end{bmatrix} . (iii)
The form of the impedance or coefficient matrix [Z(ω)] is identical to that in Equation (4.18) for a 2-dof system. That is, the elements of the coefficient matrix are
z_{11} = k_{1} − ω² m_{1}, z_{12} = z_{21} = − k_{1}, z_{22} = k_{1} + k_{2} − ω²m_{2} + iωc_{2} .
From Equation (4.19), the amplitudes of the displacements are
\begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} = [Z(ω)]^{-1} \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} = \frac{adj[Z(ω)] \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} }{\left|Z(ω)\right| } or (4.19a)
\begin{pmatrix} X_{1}\\ X_{2} \end{pmatrix} = \frac{\begin{bmatrix}( k_{22} − m_{2}ω² ) & – k_{12} \\ – k_{21} & ( k_{11} − m_{1}ω² ) \end{bmatrix} \begin{pmatrix} F_{1}\\ 0 \end{pmatrix} }{\left|Z(ω)\right| } .
\left|Z(ω)\right| = m_{1}m_{2} (ω_{1}² − ω²) (ω_{2}² − ω²) (4.19b)
X_{1} = \frac{z_{22} F_{1}}{\left|Z(ω)\right| } = \frac{ z_{22} F_{1}}{z_{11} z_{22} – z_{12} z_{21} } ;therefore
X_{1} = \frac{ k_{1} F_{1}}{(k_{1} − ω² m_{1}) (k_{1} + k_{2} − ω²m_{2} + iωc_{2}) – k_{1}²} , (iv)
and
X_{2} = \frac{- z_{12} F_{1}}{\left|Z(ω)\right|} = \frac{ (k_{1} + k_{2} − ω²m_{2} + iωc_{2}) F_{1} }{(k_{1} − ω² m_{1}) (k_{1} + k_{2} − ω²m_{2} + iωc_{2}) – k_{1}²} . (v)
Now, substituting the given data into the numerator and denominator terms in Equation (iv), one has
k_{1} + k_{2} − ω²m_{2} + iωc_{2}
=[(2.3 + 1.15) × 10^{8} − 125.66² (909) + i (125.66 × 0.25 ) × 10^{6} ] 602
= 19.904919 × 10^{10} +i (1.891183) × 10^{10} N/m
( k_{1} + k_{2} − ω²m_{2} + iωc_{2}) (k_{1} − ω² m_{1}) – k_{1}²
= 7.4148238 × 10^{16} − 5.29 × 10^{16} + i (0.7044886) × 10^{16} (N/m )²
= (2.1248238 + i 0.7044886) × 10^{16} (N/m )² .
Therefore,
X_{1} = \frac{19.904919 × 10^{10} + i (1.891183 ) × 10^{10}}{(2.1248238 + i 0.7044886) × 10^{16}} m .Rationalizing, one has
X_{1} = \frac{(19.904919 + i 1.891183 ) (2.1248238 – i 0.7044886) × 10^{- 6}}{(2.1248238 + i 0.7044886) (2.1248238 – i 0.7044886) } m .X_{1} = \frac{(43.5801 – i 10.0044) × 10^{- 6} }{2.1248238² + 0.7044886²} m
= (8.6870 – i 1.9942) × 10^{- 6} m .
From the theory of complex variables,
X_{1} = (8.6870 – i 1.9942) × 10^{- 6} m = X_{10} e^{iφ_{1}} m,where
X_{10} = \sqrt{8.6870 ² + 1.9942 ²} × 10^{- 6} m , φ_{1} = tan^{- 1} (\frac{- 1.9942}{8.6870}) .Therefore,
X_{10} = 8.9129 × 10^{- 6} m , φ_{1} = − 12.9° .Thus,
x_{1} = Im \left\{ X_{1} e^{iωt}\right\} = Im \left\{ X_{10} e^{i(ωt + φ_{1} )}\right\} = X_{10} sin (ωt + φ_{1} ) .
x_{1} = 8.9129 × 10^{- 6} sin (ωt − 12.9°) m . (vi)
Similarly, applying Equation (v), one obtains
X_{2} = \frac{13.8460 × 10^{- 6} }{(2.1248238 + i 0.7044886)} m .Rationalizing, one has
X_{2} = \frac{13.8460 (2.1248238 – i 0.7044886)× 10^{- 6} }{(2.1248238 + i 0.7044886) (2.1248238 – i 0.7044886)} m .= (5.8660 − i 1.9449 ) × 10^{−6} m .
Again, from the theory of complex variables,
X_{2} = (5.8660 − i 1.9449 ) × 10^{−6} m = X_{20}e^{iφ_{2}} m,where
X_{20} = \sqrt{5.8660 ² + 1.9942 ²} × 10^{- 6} m , φ_{2} = tan^{- 1} (\frac{- 1.9942}{5.8660}) .Therefore,
X_{20} = 6.18 × 10^{- 6} m, φ_{1} = −18.3˚ .
Thus,
x_{2} = Im \left\{ X_{2} e^{iωt}\right\} = Im \left\{ X_{20} e^{i(ωt + φ_{2} )}\right\} = X_{20} sin (ωt + φ_{2} ) .
x_{2} = 6.1800 × 10^{- 6} sin (ωt − 18.3°) m . (vii)