Question 8.18: A column of length 2l with the doubly symmetric cross-sectio......

A column of length 2l with the doubly symmetric cross-section, shown in Fig. P.8.18, is compressed between the parallel platens of a testing machine that fully prevents twisting and warping of the ends. Using the data that follows, determine the average compressive stress at which the column first buckles in torsion:

l = 500 mm,       b = 25.0 mm,       t = 2.5 mm,     E = 70,000 N/mm²,     E/G = 2.6

Answer:        \sigma_{\mathrm{CR}}=282\ \mathrm{N/mm^{2}}.

P.8.18
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

In this case Eqs (8.77) do not apply since the ends of the column are not free to warp. From Eq. (8.70) and since, for the cross-section of the column, x_{s} = y_{s} = 0,

E \Gamma{\frac{\mathrm{d}^{4}\theta}{\mathrm{d}z^{4}}}-\left(G J-I_{0}{\frac{P}{A}}\right){\frac{\mathrm{d}^{2}\theta}{\mathrm{d}z^{2}}}-P x_{S}{\frac{\mathrm{d}^{2}\text{v}}{\mathrm{d}z^{2}}}+P y_{S}{\frac{\mathrm{d}^{2}u}{\mathrm{d}z^{2}}}=0             (8.70)

 

P_{\mathrm{CR}(x x)}={\frac{\pi^{2}E I_{x x}}{L^{2}}}          P_{\mathrm{CR}(yy)}={\frac{\pi^{2}E I_{y y}}{L^{2}}}             P_{\mathrm{CR}(\theta)}={\frac{A}{I_{0}}}\left(G J+{\frac{\pi^{2}E \Gamma}{L^{2}}}\right)            (8.77)

 

E \Gamma{\frac{\mathrm{d}^{4}\theta}{\mathrm{d}z^{4}}}+\left(I_{0}{\frac{P}{A}}-G J\right){\frac{\mathrm{d}^{2}\theta}{\mathrm{d}z^{2}}}=0            (i)

For buckling, P=P_{\mathrm{CR}}, the critical load and P_{\mathrm{CR}}/A=\sigma_{\mathrm{CR}}, the critical stress. Eq. (i) may then be written

{\frac{\mathrm{d}^{4}\theta}{\mathrm{d}z^{4}}}+\lambda^{2}{\frac{\mathrm{d}^{2}\theta}{\mathrm{d}z^{2}}}=0           (ii)

in which

\lambda^{2}{=}\frac{(I_{0}\sigma_{\mathrm{CR}}-G J)}{E \Gamma}            (iii)

The solution of Eq. (ii) is

\theta=A\cos\lambda z+B\sin\lambda z+D z+F           (iv)

The boundary conditions are:

\theta=0\;\;\;\mathrm{at}\;\;z=0\;\;\;\mathrm{and}\;\;z=2l

{\frac{\mathrm{d}\theta}{\mathrm{d}z}}=0  \mathrm{at}  z=0  \mathrm{and}  z=2l (see Eq.(18.19))

 

w_{s}=-2A_{\mathrm{R}}\ {\frac{\mathrm{d}\theta}{\mathrm{d}z}}          (18.19)

Then B = D = 0, F = –A, and Eq. (iv) becomes

\theta{=}A(\cos\lambda z-1)             (v)

Since θ = 0 when z = 2l,

\cos\lambda2l=1

or

\lambda2l=2n\pi

Hence, for n = 1,

\lambda^{2}={\frac{\pi^{2}}{l^{2}}}

i.e., from Eq. (iii),

{\frac{I_{0}\sigma_{\mathrm{CR}}-G J}{E \Gamma}}={\frac{\pi^{2}}{l^{2}}}

so that

\sigma_{\mathrm{CR}}=\frac{1}{I_{0}}\left(G J+\frac{\pi^{2}E T}{l^{2}}\right)              (iv)

For the cross-section of Fig. P.8.15,

J=\sum{\frac{s t^{3}}{3}}    (see Eq.(18.11))

J=\sum{\frac{s t^{3}}{3}}       or         J=\frac{1}{3}\int_{sect}^{}{t^{3}  ds}         (18.11)

i.e.,

J={\frac{8b t^{3}}{3}}={\frac{8\times25.0\times2.5^{3}}{3}}=1041.7\,\mathrm{mm}^{4}

and

I_{x x}=4b t(b\cos30^{\circ})^{2}+2{\frac{(2b)^{3}t\sin^{2}60^{\circ}}{12}}      (see Section 16.4.5)

i.e.,

I_{x x}=4b^{3}t=4\times25.0^{3}\times2.5=156250.0  \mathrm{mm}^{4}

Similarly,

I_{y y}=0\left({\frac{b t^{3}}{12}}+b t b^{2}\right)+2{\frac{(2b)^{3}t\cos^{2}60^{\circ}}{12}}={\frac{14b^{3}t}{3}}

so that

I_{y y}=14\times25.0^{3}\times2.5/3=182291.7\,\mathrm{mm}^{4}

Then

I_{0}=I_{x x}+I_{y y}=338541.7\,\mathrm{mm}^{4}

The torsion-bending constant, Γ, is found by the method described in Section 28.2 and is given by

\Gamma=b^{5}{t}=25.0^{5}\times2.5=24\times10^{6}\mathrm{{mm}}^{4}

Substituting these values in Eq. (vi) gives

\sigma_{\mathrm{CR}}=282.0\,\mathrm{N/mm^{2}}

Related Answered Questions

Question: 8.19

Verified Answer:

The three possible buckling modes of the column ar...
Question: 8.16

Verified Answer:

There are four boundary conditions to be satisfied...
Question: 8.15

Verified Answer:

The equation for the deflected center line of the ...