Question 5.13: A current of i = 6(3- e^-2t)A flows in the circuit as shown ......

A current ofi=6(3-\mathrm{e}^{-2t})\mathrm{A} flows in the circuit as shown in Fig. 5.28. Given, i_{2}(0)=4\,\mathrm{A}, calculatei_{1}(0),\,i_{1},\,i_{2} and the voltage across the 3 H inductor.

5.28
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

{\mathrm{At}}\,t=0{\mathrm{,}}  i(0)=6(3-1)=12{\mathrm{~A}}        (5.210)

i_{1}(0)=i(0)-i_{2}(0)=12-4=8\mathrm{~A}        (5.211)

The equivalent inductance is,

L_{\mathrm{eq}}={\frac{(5+3)\times6}{8+6}}=3.43\ \mathrm{H}        (5.212)

The source voltage is determined as,

\nu=L_{\mathrm{eq}}{\frac{\mathrm{d}i}{\mathrm{d}t}}=3.43{\frac{\mathrm{d}}{\mathrm{d}t}}6(3-\mathrm{e}^{-2t})=41.14\mathrm{e}^{-2t}\, \mathrm{V}        (5.213)

Again, according to the circuit,

\nu_{\mathrm{6H}}=\nu=6{\frac{\mathrm{d}i_{1}}{\mathrm{d}t}}        (5.214)

i_{1} =\frac{41.14}{6}\int\limits_{0}^{t}{e^{-2t}dt+i_{1}\left(0\right)}        (5.215)

i_{1}=-3.43\mathrm{e}^{-2t}+8\,\mathrm{A}        (5.216)

The current i2 can be determined as,

i_{2}=i-i_{1}=6(3-\mathrm{e}^{-2t})+3.43\mathrm{e}^{-2t}-8=10-2.57\mathrm{e}^{-2t}\ \mathrm{A}        (5.217)

The voltage across 3 H inductor is,

\nu_{2}=L_{3\mathrm{H}}{\frac{\mathrm{d}i_{2}}{\mathrm{d}t}}=3{\frac{\mathrm{d}}{\mathrm{d}t}}\left(10-2.57\mathrm{e}^{-2t}\right)=15.42\mathrm{e}^{-2t}{\mathrm{~V}}        (5.218)

Related Answered Questions

Question: 5.11

Verified Answer:

v(t)={\frac{10}{2}}t=5t \ {V}     [...