(a) Determine the parameters of the motor of Example 6.5 solving for the leakage reactances using Eq. 6.59. (b) Assuming the motor to be operating from a 220-V, 60-Hz source at a speed of 1746 r/min, use MATLAB to calculate the output power for the two sets of parameters.
X_{\mathrm{bl}}=X_1 +X_2 \quad \quad \quad (6.59)
a. As found in Example 6.5
X_{\mathrm{nl}} = 21.8 Ω \quad X_{\mathrm{bl}} = 2.01 Ω\\ R_1 = 0.262 Ω \quad R_{\mathrm{bl}} = 0.652 Ω
Thus, from Eq. 6.42,
X_{\mathrm{nl}}=X_{11}= X_1 + X_m \quad \quad \quad (6.42)
X_1 + X_m =X_{\mathrm{nl}} = 21.8 Ω
and from Eq. 6.59
X_1 +X_2 = X_{\mathrm{bl}} = 2.01 Ω
From Table 6.1, X_1 = 0.3(X_1 + X_2) = 0.603 Ω \text{and thus} X_2 = 1.41 Ω \text{and} X_m = 21.2 Ω.
Finally, from Eq. 6.56,
R_2 = ( R_{\mathrm{bl}} – R_1 ) \left( \frac{X_2 +X_m}{X_m} \right) ^2 =0.444 Ω
Comparison with Example 6.5 shows the following
b. For the parameters of Example 6.6, P_{shaft} = 2467 [W] while for the parameters of part (a) of this example, P_{shaft} = 2497 [W]. Thus the approximation associated with Eq. 6.59 results in an error on the order of 1 percent from using the more exact expression of Eq. 6.54.
X_{\mathrm{bl}} = X_1 + X_2 \left( \frac{X_m}{X_2 + X_m} \right) \quad \quad \quad (6.54)
This is a typical result and hence this approximation appears to be justifiable in most cases.
Here is the MATLAB script:
Table 6.1 Empirical distribution of leakage reactances in induction motors. | |||
Fraction of \bf X_1 + X_2 |
|||
Motor class | Description | \bf X_1 |
\bf X_2
|
A | Normal starting torque, normal starting current | 0.5 | 0.5 |
B | Normal starting torque, low starting current | 0.4 | 0.6 |
C | High starting torque, low starting current | 0.3 | 0.7 |
D | High starting torque, high slip | 0.5 | 0.5 |
Wound rotor | Performance varies with rotor resistance | 0.5 | 0.5 |
Source: IEEE Standard 112. |
Parameter | Example 6.5 | Example 6.6 |
R_1 | 0.262 Ω | 0.262 Ω |
R_2 | 0.447 Ω | 0.444 Ω |
X_1 | 0.633 Ω | 0.603 Ω |
X_2 | 1.47 Ω | 1.41 Ω |
X_m | 21.2 Ω | 21.2 Ω |
clc
clear
% Here are the two sets of parameters
% Set 1 corresponds to the exact solution
% Set 2 corresponds to the approximate solution
R1 (1) = 0.262 ; R1 (2) = 0.262 ;
R2 (1) = 0.447 ; R2 (2) : 0.444 ;
X1 (1) = 0.633 ; X1 (2) = 0.603 ;
X2 (1)= 1.47 ; X2 (2) : 1.41 ;
Xm (1)= 21.2 ; Xm (2) = 21.2 ;
nph = 3 ;
poles = 4 ;
Prot = 354 ;
%Here is the operating condition
V1 = 220/sqrt (3) ;
fe = 60 ;
rpm = 1746 ;
%Calculate the synchronous speed
ns = 120 * fe/poles ;
omegas = 4 * pi * fe/poles ;
slip = (ns-rpm) / ns ;
omegam = omegas * (1 - slip) ;
% Calculate stator Thevenin equivalent
% Loop over the two motors
for m = 1 : 2
Zgap = j * Xm (m) * (j * X2 (m)+R2 (m) / slip) / (R2 (m) / slip + j * (Xm (m) + X2 (m) ) ) ;
Zin = R1(m) + j * X1 (m) + Zgap ;
I1 = V1 / Zin ;
I2 = I1 * (j * Xm (m) ) / (R2 (m) / slip + j * (Xm (m) + X2 (m) ) ) ;
Tmech = nph * abs (I2)^2 * R2 (m) / (slip*omegas) ; %Electromechanical torque
Pmech = omegam*Tmech; %Electromechanical power
Pshaft = Pmech - Prot ;
if (m == 1)
fprintf (' \nExact solution:')
else
fprintf (' \nApproximate solution:')
end
fprintf (' \n Pmech= %.if [W], Pshaft = % . if [W]' , Pmech , Pshaft )
fprintf (' \n I1 = %.if [A] \n' , abs(I1) ) ;
end % end of "for m = 1 : 2" loop