Question 6.6: (a) Determine the parameters of the motor of Example 6.5 sol......

(a) Determine the parameters of the motor of Example 6.5 solving for the leakage reactances using Eq. 6.59. (b) Assuming the motor to be operating from a 220-V, 60-Hz source at a speed of 1746 r/min, use MATLAB to calculate the output power for the two sets of parameters.

X_{\mathrm{bl}}=X_1 +X_2 \quad \quad \quad (6.59)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a. As found in Example 6.5

X_{\mathrm{nl}} = 21.8  Ω \quad  X_{\mathrm{bl}} = 2.01  Ω\\ R_1 = 0.262  Ω \quad  R_{\mathrm{bl}} = 0.652  Ω

Thus, from Eq. 6.42,

X_{\mathrm{nl}}=X_{11}= X_1 + X_m \quad \quad \quad (6.42)

X_1 + X_m =X_{\mathrm{nl}} = 21.8  Ω

and from Eq. 6.59

X_1 +X_2 = X_{\mathrm{bl}} = 2.01  Ω

From Table 6.1, X_1 = 0.3(X_1 + X_2) = 0.603  Ω  \text{and thus}  X_2 = 1.41  Ω  \text{and}  X_m = 21.2  Ω.

Finally, from Eq. 6.56,

R_2 = ( R_{\mathrm{bl}}  –  R_1 ) \left( \frac{X_2 +X_m}{X_m} \right) ^2 =0.444  Ω

Comparison with Example 6.5 shows the following

b. For the parameters of Example 6.6, P_{shaft} = 2467  [W] while for the parameters of part (a) of this example, P_{shaft} = 2497   [W]. Thus the approximation associated with Eq. 6.59 results in an error on the order of 1 percent from using the more exact expression of Eq. 6.54.

X_{\mathrm{bl}} =  X_1 + X_2 \left( \frac{X_m}{X_2 + X_m} \right) \quad \quad \quad (6.54)

This is a typical result and hence this approximation appears to be justifiable in most cases.

Here is the MATLAB script:

Table 6.1 Empirical distribution of leakage reactances in induction motors.
Fraction of
\bf X_1 + X_2
Motor class Description \bf X_1
\bf X_2
A Normal starting torque, normal starting current 0.5 0.5
B Normal starting torque, low starting current 0.4 0.6
C High starting torque, low starting current 0.3 0.7
D High starting torque, high slip 0.5 0.5
Wound rotor Performance varies with rotor resistance 0.5 0.5
Source: IEEE Standard 112.

 

Parameter Example 6.5 Example 6.6
R_1 0.262 Ω 0.262 Ω
R_2 0.447 Ω 0.444 Ω
X_1 0.633 Ω 0.603 Ω
X_2 1.47 Ω 1.41 Ω
X_m 21.2 Ω 21.2 Ω
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

clc

clear

% Here are the two sets of parameters

% Set 1 corresponds to the exact solution

% Set 2 corresponds to the approximate solution

R1 (1) = 0.262 ;      R1 (2) = 0.262 ;

R2 (1) = 0.447 ;     R2 (2) : 0.444 ;

X1 (1) = 0.633 ;     X1 (2) = 0.603 ;

X2 (1)= 1.47 ;        X2 (2) : 1.41 ;

Xm (1)= 21.2 ;      Xm (2) = 21.2 ;

nph = 3 ;
poles = 4 ;
Prot = 354 ;
%Here is the operating condition

V1 = 220/sqrt (3) ;
fe = 60 ;
rpm = 1746 ;
%Calculate the synchronous speed

ns = 120 * fe/poles ;

omegas = 4 * pi * fe/poles ;

slip = (ns-rpm) / ns ;

omegam = omegas * (1 - slip) ;

% Calculate stator Thevenin equivalent

% Loop over the two motors

for m = 1 : 2

Zgap = j * Xm (m) * (j * X2 (m)+R2 (m) / slip) / (R2 (m) / slip + j * (Xm (m) + X2 (m) ) ) ;

Zin = R1(m) + j * X1 (m) + Zgap ;

I1 = V1 / Zin ;

I2 = I1 * (j * Xm (m) ) / (R2 (m) / slip + j * (Xm (m) + X2 (m) ) ) ;

Tmech = nph * abs (I2)^2 * R2 (m) / (slip*omegas) ;     %Electromechanical torque

Pmech = omegam*Tmech;     %Electromechanical power

Pshaft = Pmech - Prot ;

if   (m == 1)

fprintf (' \nExact solution:')

else

fprintf (' \nApproximate solution:')

end

fprintf (' \n    Pmech= %.if    [W],    Pshaft = % . if  [W]' , Pmech ,  Pshaft )

fprintf (' \n    I1 = %.if   [A] \n' , abs(I1) ) ;

end %  end  of  "for  m  = 1 : 2"  loop

Related Answered Questions