Holooly Plus Logo

Question 24.26: (a) Find the d.c.t., F[k], of the sequence f[n] = 2, 4, 6. (......

(a) Find the d.c.t., F[k], of the sequence f[n] = 2, 4, 6.
(b) Apply the inverse d.c.t. to F[k] and show that the original sequence, f[n], is obtained.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) We use the formula

F[k]=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f[n] \cos \left[\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right] \quad \text { for } k=0,1,2, \ldots, N-1

Here the number of terms, N, is three.
When k = 0

\begin{aligned} F[0] & =\frac{1}{\sqrt{3}} \sum_{n=0}^2 f[n] \cos \left[\frac{\pi}{3}\left(n+\frac{1}{2}\right) \times 0\right] \\ & =\frac{1}{\sqrt{3}}[2 \cos 0+4 \cos 0+6 \cos 0]=\frac{12}{\sqrt{3}} \end{aligned}

When k = 1

\begin{aligned} F[1] & =\frac{1}{\sqrt{3}} \sum_{n=0}^2 f[n] \cos \left[\frac{\pi}{3}\left(n+\frac{1}{2}\right) \times 1\right] \\ & =\frac{1}{\sqrt{3}}\left[2 \cos \frac{\pi}{6}+4 \cos \frac{\pi}{2}+6 \cos \frac{5 \pi}{6}\right] \\ & =\frac{1}{\sqrt{3}}\left[2 \times \frac{\sqrt{3}}{2}+0+6 \times\left(-\frac{\sqrt{3}}{2}\right)\right]=\frac{1}{\sqrt{3}}[\sqrt{3}-3 \sqrt{3}]=-2 \end{aligned}

When k = 2

\begin{aligned} F[2] & =\frac{1}{\sqrt{3}} \sum_{n=0}^2 f[n] \cos \left[\frac{\pi}{3}\left(n+\frac{1}{2}\right) \times 2\right] \\ & =\frac{1}{\sqrt{3}}\left[2 \cos \frac{\pi}{3}+4 \cos \pi+6 \cos \frac{5 \pi}{3}\right] \\ & =\frac{1}{\sqrt{3}}\left[2 \times \frac{1}{2}+4 \times(-1)+6 \times \frac{1}{2}\right]=1-4+3=0 \end{aligned}

So the d.c.t. of the sequence 2, 4, 6 is \frac{12}{\sqrt{3}},-2,0.

(b) We now apply the inverse d.c.t. to F[k].
The inverse d.c.t. is

\begin{gathered} f[n]=\frac{1}{\sqrt{N}}\left\{F[0]+2 \sum_{k=1}^{N-1} F[k] \cos \left[\frac{\pi}{N} k\left(n+\frac{1}{2}\right)\right]\right\} \\ \text { for } n=0,1,2, \ldots, N-1 \end{gathered}

When n = 0

\begin{aligned} f[0] & =\frac{1}{\sqrt{3}}\left\{\frac{12}{\sqrt{3}}+2 \sum_{k=1}^2 F[k] \cos \left[\frac{\pi}{3} k\left(0+\frac{1}{2}\right)\right]\right\} \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}+2 \times(-2) \times \cos \left(\frac{\pi}{6}\right)+2 \times 0\right] \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}-4 \times \frac{\sqrt{3}}{2}+0\right]=4-2=2 \end{aligned}

When n = 1

\begin{aligned} f[1] & =\frac{1}{\sqrt{3}}\left\{\frac{12}{\sqrt{3}}+2 \sum_{k=1}^2 F[k] \cos \left[\frac{\pi}{3} k\left(1+\frac{1}{2}\right)\right]\right\} \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}+2 \times(-2) \times \cos \left(\frac{\pi}{2}\right)+2 \times 0\right] \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}-4 \times 0+0\right]=4 \end{aligned}

When n = 2

\begin{aligned} f[2] & =\frac{1}{\sqrt{3}}\left\{\frac{12}{\sqrt{3}}+2 \sum_{k=1}^2 F[k] \cos \left[\frac{\pi}{3} k\left(2+\frac{1}{2}\right)\right]\right\} \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}+2 \times(-2) \times \cos \left(\frac{5 \pi}{6}\right)+2 \times 0\right] \\ & =\frac{1}{\sqrt{3}}\left[\frac{12}{\sqrt{3}}-4 \times\left(-\frac{\sqrt{3}}{2}\right)+0\right]=4+2=6 \end{aligned}

So f[n] = 2, 4, 6, which was the original sequence as expected.

Related Answered Questions

Question: 24.9

Verified Answer:

Amplitude modulation is a technique that allows au...
Question: 24.35

Verified Answer:

It is straightforward but tedious to show that the...
Question: 24.34

Verified Answer:

Either directly from the definition of the d.f.t.,...
Question: 24.29

Verified Answer:

First we find the corresponding d.f.t.s, F[k] and ...