Question 18.24: A jet of water having a velocity of 30 m/s impinges on a cur......

A jet of water having a velocity of 30 m/s impinges on a curved vane which is moving in the same direction as that of the jet with a velocity of 10 m/s. The jet makes an angle of 30° with the direction of motion of vane at entry and leaves the vane at an angle of 135°. If the water enters and leaves the vane without shock, find the vane angles at inlet and outlet. Also find the work done per second per unit weight of water striking the vane. Neglect friction.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:

Velocity of jet            V_1=30 \mathrm{~m} / \mathrm{s}

Velocity of vane           u =10 m/s

Angle made by jet with the direction of motion of vane at entry  \alpha_1=30^{\circ}

Angle made by leaving jet with the direction of motion of vane = 135°

\therefore \quad \alpha_2=180^{\circ}-135^{\circ}=45^{\circ}

The inlet and outlet velocity triangles are shown in Fig. 18.19.

Here          u_1=u_2=u=10 \mathrm{~m} / \mathrm{s}

V_{r 1}=V_{r 2}                   \text { ( } \because \text { friction neglected) }

From the inlet velocity triangle, we have

V_{w 1}=V_1 \cos \alpha_1=30 \times \cos 30^{\circ}=25.98 \mathrm{~m} / \mathrm{s}

V_{f 1}=V_1 \sin \alpha_1=30 \times \sin 30^{\circ}=15 \mathrm{~m} / \mathrm{s}

\tan \beta_1=\frac{V_{f 1}}{V_{w 1}-u_1}

or          \tan \beta_1=\frac{15}{25.98-10}=0.9387

or          \beta_1=\tan ^{-1}(0.9387)=43.19^{\circ}

Again from the inlet velocity triangle, we get

\sin \beta_1=\frac{V_{f 1}}{V_{r 1}}

or                            V_{r 1}=\frac{V_{f 1}}{\sin \beta_1}=\frac{15}{\sin 43.19^{\circ}}=21.92 \mathrm{~m} / \mathrm{s}

\therefore \quad V_{r 2}=V_{r 1}=21.92 \mathrm{~m} / \mathrm{s}

From the outlet velocity triangle, we obtain

\frac{V_{r 2}}{\sin 135^{\circ}}=\frac{u_2}{\sin \left(\alpha_2-\beta_2\right)}

or                            \frac{21.92}{\sin 135^{\circ}}=\frac{10}{\sin \left(45^{\circ}-\beta_2\right)}

or                            \sin \left(45^{\circ}-\beta_2\right)=\frac{10 \times \sin 135^{\circ}}{21.92}=0.3226=\sin 18.82^{\circ}

or                          45^{\circ}-\beta_2=18.82^{\circ}

or                          \beta_2=45^{\circ}-18.82^{\circ}=26.18^{\circ}

Again from the outlet velocity triangle, we get

V_{w 2}=V_{r 2} \cos \beta_2-u_2

=21.92 \cos 26.18^{\circ}-10=9.67 \mathrm{~m} / \mathrm{s}

The work done per second per unit weight of water striking the vane is given by Eq. (18.27) as

={\frac{(V_{{w1}}\pm V_{{w2}})\times u}{g}}      (18.27)

=\frac{\left(V_{w 1}-V_{w 2}\right) \times u}{g}

=\frac{25.98-(-9.67) \times 10}{9.81}

=36.34 \mathrm{~N}-\mathrm{m} / \mathrm{N}

7777777rrrrrr

Related Answered Questions