A jet of water having a velocity of 30 m/s impinges on a curved vane which is moving in the same direction as that of the jet with a velocity of 10 m/s. The jet makes an angle of 30° with the direction of motion of vane at entry and leaves the vane at an angle of 135°. If the water enters and leaves the vane without shock, find the vane angles at inlet and outlet. Also find the work done per second per unit weight of water striking the vane. Neglect friction.
Given data:
Velocity of jet V_1=30 \mathrm{~m} / \mathrm{s}
Velocity of vane u =10 m/s
Angle made by jet with the direction of motion of vane at entry \alpha_1=30^{\circ}
Angle made by leaving jet with the direction of motion of vane = 135°
\therefore \quad \alpha_2=180^{\circ}-135^{\circ}=45^{\circ}The inlet and outlet velocity triangles are shown in Fig. 18.19.
Here u_1=u_2=u=10 \mathrm{~m} / \mathrm{s}
V_{r 1}=V_{r 2} \text { ( } \because \text { friction neglected) }
From the inlet velocity triangle, we have
V_{w 1}=V_1 \cos \alpha_1=30 \times \cos 30^{\circ}=25.98 \mathrm{~m} / \mathrm{s}
V_{f 1}=V_1 \sin \alpha_1=30 \times \sin 30^{\circ}=15 \mathrm{~m} / \mathrm{s}
\tan \beta_1=\frac{V_{f 1}}{V_{w 1}-u_1}
or \tan \beta_1=\frac{15}{25.98-10}=0.9387
or \beta_1=\tan ^{-1}(0.9387)=43.19^{\circ}
Again from the inlet velocity triangle, we get
\sin \beta_1=\frac{V_{f 1}}{V_{r 1}}
or V_{r 1}=\frac{V_{f 1}}{\sin \beta_1}=\frac{15}{\sin 43.19^{\circ}}=21.92 \mathrm{~m} / \mathrm{s}
\therefore \quad V_{r 2}=V_{r 1}=21.92 \mathrm{~m} / \mathrm{s}From the outlet velocity triangle, we obtain
\frac{V_{r 2}}{\sin 135^{\circ}}=\frac{u_2}{\sin \left(\alpha_2-\beta_2\right)}
or \frac{21.92}{\sin 135^{\circ}}=\frac{10}{\sin \left(45^{\circ}-\beta_2\right)}
or \sin \left(45^{\circ}-\beta_2\right)=\frac{10 \times \sin 135^{\circ}}{21.92}=0.3226=\sin 18.82^{\circ}
or 45^{\circ}-\beta_2=18.82^{\circ}
or \beta_2=45^{\circ}-18.82^{\circ}=26.18^{\circ}
Again from the outlet velocity triangle, we get
V_{w 2}=V_{r 2} \cos \beta_2-u_2
=21.92 \cos 26.18^{\circ}-10=9.67 \mathrm{~m} / \mathrm{s}
The work done per second per unit weight of water striking the vane is given by Eq. (18.27) as
={\frac{(V_{{w1}}\pm V_{{w2}})\times u}{g}} (18.27)
=\frac{\left(V_{w 1}-V_{w 2}\right) \times u}{g}
=\frac{25.98-(-9.67) \times 10}{9.81}
=36.34 \mathrm{~N}-\mathrm{m} / \mathrm{N}