Question 14.7: A mixture of benzene gas with 60 % excess air contained in a......

A mixture of benzene gas with 60 % excess air contained in a constant-volume tank undergoes the combustion. Determine the net heat transfer. Product-temperature is 1,000 K. Use the data given below:

h1000K \overline{h}_{1000K}
kJ/ kmol
h298K \overline{h}_{298K}
kJ/ kmol
hf0 \overline{h^0_f}
kJ/ kmol
Substance
– – – – – – 82,930 C6H6(g) C_6 H_{6} (g)
31,389 8682 0 O2O_2
30,129 8669 0 N2 N_2
35,882 9904 -241,820 H2O(g) H_2O(g)
30,355 8669 -110,530 CO
42,769 9364 -393,520 CO2 CO_2

 

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given: (1) Combustion reactants: Air and benzene, (2) Excess air: 60%
Find out: heat transferred per kmol of benzene.
Properties: Molar mass of C, H2C,  H_2 and O2O_2 and air are: 12 kg/kmol, 2 kg/kmol, 32 kg/kmol and 29 kg/kmol
respectively.
Assumption: (1) Combustion is complete, (2) Air and combustion gases are ideal (3) Kinetic and potential energies are negligible (4) Combustion products are H2O, CO2H_2O,  CO_2 and N2N_2 only.
Combustion reaction with no-excess air will be:

C6H6+(7.5 O2+28.2 N2)6 CO2 + 3 H2O(28.2 N2) C_6H_6 + (7.5  O_2 + 28.2  N_2) \longrightarrow 6  CO_2  +  3  H_2O (28.2  N_2)

From the first law:
For constant volume,

QW=NR(Hf0+HH0pV)RNP(Hf0+HH0pV)p Q – W = \sum{N_R} (H^0_f + H – H_0 – pV)_R – \sum{N_P (H^0_f + H – H_0 – pV)_p}

With W = 0,

Q=NR(Hf0+HH0pV)RNP(Hf0+HH0pV)p Q = \sum{N_R} (H^0_f + H – H_0 – pV)_R – \sum{N_P (H^0_f + H – H_0 – pV)_p}

Assuming ideal gas condition:

Q=NR(Hf0+HH0RT)RNP(Hf0+HH0RT)p Q = \sum{N_R} (H^0_f + H – H_0 – RT)_R – \sum{N_P (H^0_f + H – H_0 – RT)_p}

From the given table data:

NP(Hf0+HH0RT)p=6×(3,93,520+42,7699,3648.314×1,000)+3×(2,41,820+35,8829,9048.314×1,000)+28.2×(0+30,1598,6698.314×1,000) \sum{N_P} (H^0_f + H – H_0 – RT)_p = 6 \times (- 3,93,520 + 42,769 – 9,364 – 8.314 \times 1,000) + 3\times (-2,41,820 + 35,882 – 9,904 – 8.314 \times 1,000) + 28.2 \times (0 + 30,159 – 8,669 – 8.314 \times 1,000)
= –24,81,766 kJ/kmol

NR(Hf0+HH0RT)R=1×(82,9308.314×1,000)+7.5×(8.314×1,000)+28.2×(8.314×1,000) \sum{N_R} (H^0_f + H – H_0 – RT)_R = 1 \times (82,930 -8.314 \times 1,000) + 7.5 \times (- 8.314 \times 1,000) + 28.2 \times (- 8.314 \times 1,000)
= –7,996.89 kJ/kmol.

So, Q = –24,81,766 – (–7,996.89) = –24,73,769.11 kJ/kmol.
Negative sign indicates heat outgoing.

14.6

Related Answered Questions

Question: 14.6

Verified Answer:

Given: Combustion reactants: Air and n-octane Find...
Question: 14.5

Verified Answer:

The excess air, i.e. 80% or 0.8 will be the surplu...
Question: 14.4

Verified Answer:

Given: Combustion reactants: Air and C_3H_8...
Question: 14.3

Verified Answer:

Given: Reactants—Air and C8H18C_8H_{18} ...