Question 24.3: A new gas separation process is being developed to separate ......

A new gas separation process is being developed to separate ethylene (C_{2}H_{4}) from a gas mixture that contains ethylene, small amounts of carbon dioxide (CO_{2}), and carbon monoxide (CO). As part of the process analysis, the gas-phase diffusion coefficient of CO_{2} gas in ethylene and the gas-phase diffusion coefficient of CO in ethylene are needed at 2.0 atm and 77 C (350 K). For the CO_{2}-C_{2}H_{4} binary pair, estimate the gas-phase binary diffusion coefficient by the Hirschfelder and Fuller–Schettler–Giddings correlations. For the CO-C_{2}H_{4} binary pair, extrapolate data found in Appendix J to estimate the binary gas-phase diffusion coefficient.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For the \mathrm{CO_{2}- e t h y l e n e} binary pair, let species A represent CO_{2} with molecular weight of 44 g/mole, and species B represent ethylene with molecular weight of 28 g/mole. Let us first use the Hirschfelder equation. From Appendix K, Table K.2, the Lennard–Jones constants needed for the Hirschfelder equation are \sigma_{A}=3.996\ \mathring{A} , \sigma_{B}=4.232\ \mathring{A} , \epsilon_{A}/\kappa\equiv190\ K,\,\epsilon_{B}/\kappa\equiv205\ \mathrm{K}.

Consequently,

\sigma_{A B}={\frac{\sigma_{A}+\sigma_{B}}{2}}={\frac{3.996\,{\mathring{\mathrm{A}}}+4.232\,{\mathring{\mathrm{A}}}}{2}}=4.114\,{\mathring{\mathrm{A}}}

{\frac{\kappa T}{\epsilon_{A B}}}=\left({\frac{\kappa}{\epsilon_{A}}}{\frac{\kappa}{\epsilon_{A}}}\right)^{1/2}T=\left({\frac{1}{190\,\mathrm{K}}}{\frac{1}{205\,\mathrm{K}}}\right)^{1/2}(350\,\mathrm{K})=1.77

From Appendix K, Table K.1, \Omega_{D}=1.123. Therefore,

D_{A B}=\frac{~0.001858~T^{3/2}\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)^{1/2}}{~P\sigma_{A B}^{2}\Omega_{D}}={\frac{\mathrm{0.001858~}(350)^{3/2}\left({\frac{1}{44}}+{\frac{1}{28}}\right)^{1/2}}{(2.0)(4.114)^{2}(1.123)}}=0.077\,\,\mathrm{cm^{2}/s}

Now, let us compare the Hirschfelder correlation with the Fuller–Schettler–Giddings correlation. From Table 24.3, the atomic diffusion volume for CO_2 is 26.9; the atomic diffusion volume for ethylene (C_{2}H_{4}) is estimated the group contribution method using C and H building blocks also given in Table 24.3:

(\Sigma n_{i})_{B}=2\cdot n_{C}+4\cdot n_{H}=2(16.5)+4(1.98)=40.92

Therefore, the diffusion coefficient estimated by the Fuller–Schettler–Giddings correlation is

D_{A B}=\frac{\mathrm{0.001~}T^{1.75}\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)^{1/2}}{P\Big[(\Sigma n_{i})_{A}^{1/3}+(\Sigma n_{i})_{B}^{1/3}\Big]^{2}} = \frac{0.001\left(350\right)^{1.75}\left(\frac{1}{44}+\frac{1}{28}\right)^{1/2}}{\left(2.0\right)\left[\left(26.9\right)^{1/3}+\left(40.92\right)^{1/3}\right]^{2}}=0.082\,\mathrm{cm}^{2}/s

The two correlations agree within 7%.

For the CO-C_{2}H_{4} binary pair, with A CO , and B ethylene (C_{2}H_{4}) , from Appendix J, Table J.1, the measured diffusion coefficient is { D}_{A B}=0.151\,\mathrm{cm}^{2}/s at 1.0 atm and 273 K. By the Hirschfelder extrapolation, the diffusion coefficient at 2.0 atm and 350 K is

D_{A B}(T,P)=D_{A B}(T_{o},P_{o})\left(\frac{P_{o}}{P}\right)\left(\frac{T}{T_{o}}\right)^{3/2}\frac{\Omega_{D}(T_{o})}{\Omega_{D}(T)}

=\left(0.151{\frac{\mathrm{cm}^{2}}{\mathrm{s}}}\right)\left({\frac{1.0\,\mathrm{atm}}{2.0\,\mathrm{atm}}}\right)\left({\frac{350\,\mathrm{K}}{273\,\mathrm{K}}}\right)^{3/2}\left({\frac{1.112}{1.022}}\right)=0.119\,\mathrm{cm}^{2}/\mathrm{s}.

Table J.1 Binary mass diffusivities in \mathrm{gascs}^{\dagger}

System T ( K ) D_{ABP} ( cm² atm / s ) D_{ABP} ( m² Pa / s )
Air
Ammonia 273 0.198 2.006
Aniline 298 0.0726 0.735
Benzene 298 0.0962 0.974
Bromine 293 0.091 0.923
Carbon dioxide 273 0.136 1.378
Carbon disulfide 273 0.0883 0.894
Chlorine 273 0.124 1.256
Diphenyl 491 0.160 1.621
Ethyl acetate 273 0.0709 0.718
Ethanol 298 0.132 1.337
Ethyl ether 293 0.0896 0.908
Iodine 298 0.0834 0.845
Methanol 298 0.162 1.641
Mercury 614 0.473 4.791
Naphthalene 298 0.0611 0.619
Nitrobenzene 298 0.0868 0.879
n – Octane 298 0.0602 0.610
Oxygen 273 0.175 1.773
Propyl acetate 315 0.092 0.932
Sulfur dioxide 273 0.122 1.236
Toluene 298 0.0844 0.855
Water 298 0.260 2.634
Ammonia
Ethylene 293 0.177 1.793
Argon
Neon 293 0.329 3.333
Carbon dioxide
Benzene 318 0.0715 0.724
Carbon disulfide 318 0.0715 0.724
Ethyl acetate 319 0.0666 0.675
(continued)

 

Table J.1 (Continued)
System T ( K ) D_{ABP} ( cm² atm / s ) D_{ABP} ( m² Pa / s )
Ethanol 273 0.0693 0.702
Ethyl ether 273 0.0541 0.548
Hydrogen 273 0.550 5.572
Methane 273 0.153 1.550
Methanol 298.6 0.105 1.064
Nitrogen 298 0.165 1.672
Nitrous oxide 298 0.117 1.185
Propane 298 0.0863 0.874
Water 298 0.164 1.661
Carbon monoxide
Ethylene 273 0.151 1.530
Hydrogen 273 0.651 6.595
Nitrogen 288 0.192 1.945
Oxygen 273 0.185 1.874
Helium
Argon 273 0.641 6.493
Benzene 298 0.384 3.890
Ethanol 298 0.494 5.004
Hydrogen 293 1.64 16.613
Neon 293 1.23 12.460
Water 298 0.908 9.198
Hydrogen
Ammonia 293 0.849 8.600
Argon 293 0.770 7.800
Benzene 273 0.317 3.211
Ethane 273 0.439 4.447
Methane 273 0.625 6.331
Oxygen 273 0.697 7,061
Water 293 0.850 8.611
Nitrogen
Ammonia 293 0.241 2.441
Ethylene 298 0.163 1.651
Hydrogen 288 0.743 7.527
Iodine 273 0.070 0.709
Oxygen 273 0.181 1.834
Oxygen
Ammonia 293 0.253 2.563
Benzene 296 0.0939 0.951
Ethylene 293 0.182 1.844

^†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958, Chapter 8.

Table 24.3 Atomic diffusion volumes for use in estimating D_{AB} by the method of Fuller, Schettler, and Giddings^{10}

Atomic and Structure Diffusion-Volume Increments, {n}_{i}
C 16.5 CI 19.5
H 1.98 S 17.0
O 5.48 Aromatic Ring -20.2
N 5.69 Heterocyclic Ring -20.2
Diffusion Volumes for Simple Molecules, n
H_{2} 7.07 Ar 16.1 \mathrm{H}_{2}\mathrm{O} 12.7
D_{2} 6.70 Kr 22.8 \mathrm{C}(\mathrm{Cl}_{2})(\mathrm{F}_{2}) 114.8
He 2.88 CO 18.9 \mathrm{SF}_{6} 69.7
N_{2} 17.9 CO_{2} 26.9 \mathrm{Cl}_{2} 37.7
O_{2} 16.6 N_{2}O 35.9 \mathrm{Br}_{2} 67.2
Air 20.1 NH_{3} 14.9 \mathrm{SO}_{2} 41.1

Table K.1 The collision integrals, \Omega_\mu \text { and } \Omega_D, based on the Lennard–Jones potential†

κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D (for mass
diffusivity
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D
(for mass
diffusivity)
1.75 1.234 1.128
0.30 2.785 2.662 1.80 1.221 1.116
0.35 2.628 2.476 1.85 1.209 1.105
0.40 2.492 2.318 1.90 1.197 1.094
0.45 2.368 2.184 1.95 1.186 1.084
0.50 2.257 2.066 2.00 1.175 1.075
0.55 2.156 1.966 2.10 1.156 1.057
0.60 2.065 1.877 2.20 1.138 1.041
0.65 1.982 1.798 2.30 1.122 1.026
0.70 1.908 1.729 2.40 1.107 1.012
0.75 1.841 1.667 2.50 1.093 0.9996
0.80 1.780 1.612 2.60 1.081 0.9878
0.85 1.725 1.562 2.70 1.069 0.9770
0.90 1.675 1.517 2.80 1.058 0.9672
0.95 1.629 1.476 2.90 1.048 0.9576
1.00 1.587 1.439 3.00 1.039 0.9490
1.05 1.549 1.406 3.10 1.030 0.9406
1.10 1.514 1.375 3.20 1.022 0.9328
1.15 1.482 1.346 3.30 1.014 0.9256
1.20 1.452 1.320 3.40 1.007 0.9186
1.25 1.424 1.296 3.50 0.9999 0.9120
1.30 1.399 1.273 3.60 0.9932 0.9058
1.35 1.375 1.253 3.70 0.9870 0.8998
1.40 1.353 1.233 3.80 0.9811 0.8942
1.45 1.333 1.215 3.90 0.9755 0.8888
1.50 1.314 1.198 4.00 0.9700 0.8836
1.55 1.296 1.182 4.10 0.9649 0.8788
1.60 1.279 1.167 4.20 0.9600 0.8740
1.65 1.264 1.153 4.30 0.9553 0.8694
(continued)

 

Table K.1 (Continued)
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D (for mass
diffusivity
κT/ ϵ \Omega_\mu=\Omega_k
(for viscosity
and thermal
conductivity)
\Omega_D
(for mass
diffusivity)
1.70 1.248 1.140 4.40 0.9507 0.8652
4.50 0.9464 0.8610 10.0 0.8242 0.7424
4.60 0.9422 0.8568 20.0 0.7432 0.6640
4.70 0.9382 0.8530 30.0 0.7005 0.6232
4.80 0.9343 0.8492 40.0 0.6718 0.5960
4.90 0.9305 0.8456 50.0 0.6504 0.5756
5.0 0.9269 0.8422 60.0 0.6335 0.5596
6.0 0.8963 0.8124 70.0 0.6194 0.5464
7.0 0.8727 0.7896 80.0 0.6076 0.5352
8.0 0.8538 0.7712 90.0 0.5973 0.5256

Table K.2 Lennard–Jones force constants calculated from viscosity data^†

Compound Formula \epsilon_A / \kappa, \text { in }(\mathrm{K}) \sigma ,\ in\ \mathring{A}
Acetylene C₂H₂ 185 4.221
Air 97 3.617
Argon A 124 3.418
Arsine AsH_3 281 4.06
Benzene C_6H_6 440 5.270
Bromine Br₂ 520 4.268
i – Butane C_{4}H_{10} 313 5.341
n – Butane C_{4}H_{10} 410 4.997
Carbon dioxide CO₂ 190 3.996
Carbon disulfide CS₂ 488 4.438
Carbon monoxide CO 110 3.590
Carbon tetrachloride CCl_4 327 5.881
Carbonyl sulfide COS 335 4.13
Chlorine Cl₂ 357 4.115
Chloroform CHCl_3 327 5.430
Cyanogen C₂N₂ 339 4.38
Cyclohexane C_6H_{12} 324 6.093
Ethane C₂H_6 230 4.418
Ethanol C₂H_5OH 391 4.455
Ethylene C₂H_6 205 4.232
Fluorine F₂ 112 3.653
Helium He 10.22 2.576
n – Heptane C₂H_{16} 282^‡ 8.88^3
n – Hexane C_6H_{14} 413 5.909
Hydrogen H₂ 33.3 2.968
Hydrogen chloride HCl 360 3.305

^†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958.

^‡Calculated from virial coefficients.¹

Table K.2 (Continued)
Compound Formula \epsilon_A / \kappa, \text { in }(\mathrm{K}) \sigma ,\ in\ \mathring{A}
Hydrogen iodide HI 324 4.123
Iodine I₂ 550 4.982
Krypton Kr 190 3.60
Methane CH_4 136.5 3.822
Methanol CH_3OH 507 3.585
Methylene chloride CH₂Cl₂ 406 4.759
Methyl chloride CH_3CH 855 3.375
Mercuric iodide Hgl₂ 691 5.625
Mercury Hg 851 2.898
Neon Ne 35.7 2.789
Nitric oxide NO 119 3.470
Nitrogen N₂ 91.5 3.681
Nitrous oxide N₂O 220 3.879
n – Nonane C_9H_{20} 240 8.448
n – Octane C_8H_{18} 320 7.451
Oxygen O₂ 113 3.433
n – Pentane C_5H_{12} 345 5.769
Propane C_3H_8 254 5.061
Silane SiH_4 207.6 4.08
Silicon tetrachloride SiCl_4 358 5.08
Sulfur dioxide SO₂ 252 4.290
Water H₂O 356 2.649
Xenon Xe 229 4.055

Related Answered Questions