Question 31.6: A packed tower is used to reduce the ammonia (NH3) concentra......

A packed tower is used to reduce the ammonia (NH3)(NH_{3}) concentration in a gas stream from 4.0 to 0.30 mole%. Pure liquid water is fed to the top of the tower at a rate of 0.231 kg/s, and the gas is fed countercurrently to the bottom of the tower at a volumetric rate of 0.20 m³/s. The tower is packed with 1.0-inch Raschig rings, and is operated at 293 K and 1.0 atm. The bulk properties of the liquid can be taken as the properties of liquid water. At 298 K, for liquid water, the density is 998.2 kg/m³, and the viscosity is 993×106kg/ms.993\times10^{-6}\,\mathrm{kg/m}\cdot s.

Calculate the diameter of the packed tower if the gas pressure drop is limited to 200 N/m² per meter of packing.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The Flooding correlation will be used to estimate the tower diameter. To use the Flooding correlation, the mass flow rates of the gas and liquid in countercurrent flow must be determined. For gas absorption, the highest mass flow rates of both gas and liquid are located at the bottom of the tower. Therefore AG1 and AL1A G_{1}^{\prime}{\mathrm{~and~}}A L_{1}^{\prime} must be determined. The inlet molar flow rate of gas is determined from the volumetric flow rate using the ideal gas law:

AG1=V˙1PRT=(0.20m3s)(1.0 atm)(0.08206m3atmkgmoleK)(293K)=8.32×103kgmole/sA G_{1}=\dot{V}_{1}\frac{{ P}}{R T}=\left(0.20\frac{{\mathrm m}^{3}}{s}\right) \frac{(1.0\ atm)}{\left(0.08206{\frac{\mathrm{m^{3}}\cdot{\mathrm{atm}}}{\mathrm{kgmole}\cdot\mathrm{K}}}\right)(293\,\mathrm{K})} =8.32\times10^{-3}\,\mathrm{kgmole}/\mathrm{s}

The average molecular weight of the inlet gas is determined by

Mw,G1=yA1MA+(1yA1)MB=(0.040)(17)+(10.040)(29)=28.5kg/kgmoleM_{w,G_{1}}=y_{A_{1}}M_{A}+(1-y_{A_{1}})M_{B}=(0.040)(17)+(1-0.040)(29)=28.5\,\mathrm{{kg/kgmole}}

where component B refers to the carrier gas (air). The mass flow rate of entering gas is

AG1=AG1Mw,G1=(8.32×103 kgmole/s)(28.5 kg/kgmole)=0.237 kg/sA G_{1}^{\prime}=A G_{1}\cdot M _{w,G_{1}} = (8.32\times10^{-3}\mathrm{~kgmole}/s)(28.5\mathrm{~kg/kgmole})=0.237\mathrm{~kg/s}

The inlet molar flow rate of the pure water solvent (xA2=0) is(x_{A_{2}}=0)~{\mathrm{is}}

AL2=AL2/Mw,L2=(0.231 kg/s)/(18 kg/kgmole)=1.28×102 kgmole/sA L_{2}=A L_{2}^{\prime}/M_{w,L_{2}}=(0.231\ {\mathrm{kg/s}})/(18\ {\mathrm{kg/kgmole}})=1.28\times10^{-2}\ {\mathrm{kgmole}}/{\mathrm{s}}

The outlet gas molar flow rate is calculated by

AG2=AGS1yA2=AG1(1yA1)1yA2=(8.32×103)(10.040)(10.003)=8.01×103kgmole/sA G_{2}=\frac{A G_{S}}{1-y_{A_{2}}}=\frac{A G_{1}(1-y_{A_{1}})}{1-y_{A_{2}}}=\frac{(8.32\times10^{-3})(1-0.040)}{(1-0.003)}=8.01\times10^{-3}\,\mathrm{kgmole}/s

From an overall balance on the terminal streams, the outlet liquid molar flow rate is

AL1=AL2+(AG1AG2)=1.28×102+(8.32×1038.01×103)=1.31×102kgmole/sA L_{1}=A L_{2}+(A G_{1}-A G_{2}) =1.28\times10^{-2}+(8.32\times10^{-3}-8.01\times10^{-3})=1.31\times10^{-2}\mathrm{kgmole}/{\mathrm{s}}

A balance of solute A around the terminal streams is given by

yA1AG1+xA2AL2=yA2AG2+xA1AL1y_{A_{1}}A G_{1}+x_{A_{2}}A L_{2}=y_{A_{2}}A G_{2}+x_{A_{1}}A L_{1}

Or, since xA2=0,x_{A_{2}}=0,

xA1=yA1AG1yA2AG2AL1=(0.040)(8.32×103)(0.0030)(8.01×103)1.31×102=0.024x_{A_{1}}=\frac{y_{A_{1}}A G_{1}-y_{A_{2}}A G_{2}}{A L_{1}}= {\frac{(0.040)(8.32\times10^{-3})-(0.0030)(8.01\times10^{-3})}{1.31\times10^{-2}}}=0.024

The average molecular weight of the outlet liquid stream is

Mw,L1=xA1MA+(1xA1)MB=(0.024)(17)+(10.024)(18)=18  kg/kgmoleM_{w,L_{1}}=x_{A_{1}}M_{A}+(1-x_{A_{1}})M_{B}=(0.024)(17)+(1-0.024)(18)=18\;\mathrm{kg/kgmole}

where component B refers to the solvent (water). Finally, the outlet mass flow rate of liquid is

AL1=AL1Mw,L1=(1.31×102 kgmole/s)(18 kg/kgmole)=0.237 kg/sA L_{1}^{\prime}=A L_{1}\cdot M_{w,L_{1}}=\left(1.31\times10^{-2}\ \mathrm{kgmole}/s\right)\left(18\mathrm{~kg/kgmole}\right)=0.237\ \mathrm{kg/s}

With the mass flow rates known, the x-axis on the Flooding correlation will now be determined. First, the ratio of the liquid to gas mass flow rate at the bottom of the tower is

LG=ALAG=0.237 kg/s0.237 kg/s=1.00{\frac{L^{\prime}}{G^{\prime}}}={\frac{A L^{\prime}}{A G^{\prime}}}={\frac{0.237\ {\mathrm{kg/s}}}{0.237\ {\mathrm{kg/s}}}}=1.00

Note that this ratio can be evaluated without knowing the diameter or cross-sectional area of the empty tower. Next, the density of the gas stream entering the tower is

ρG=PRTMW,G1=(1.0 atm)(0.08206m3atmkgmoleK)(293K)(28.5kg/kgmole)=1.19kg/m3\rho_{G}=\frac{P}{R T}M_{W,G_{1}} = \frac{(1.0\ atm)}{\left(0.08206{\frac{\mathrm{m^{3}}\cdot{\mathrm{atm}}}{\mathrm{kgmole}\cdot\mathrm{K}}}\right)(293\,\mathrm{K})}(28.5\,\mathrm{kg/kgmole})=1.19\,\mathrm{kg/m^{3}}

Therefore, the x-axis on the Flooding correlation (Figure 31.23) is

LG(ρGρLρG)1/2=1.00(1.19998.21.19)1/2=0.034\frac{L^{\prime}}{G^{\prime}}\left(\frac{\rho_{G}}{\rho_{L}-\rho_{G}}\right)^{1/2}=1.00\left(\frac{1.19}{998.2-1.19}\right)^{1/2}=0.034

which is a dimensionless quantity. At a pressure drop of 200 N/m² per meter of packing depth, the y-axis value of the Flooding correlation is 0.049 if the x-axis value is 0.034. Consequently,

0.049=(G)2cf(μL)0.1JρG(ρLρG)gc0.049={\frac{(G^{\prime})^{2}c_{f}(\mu_{L})^{0.1}J}{\rho_{G}(\rho_{L}-\rho_{G})g_{c}}}

This expression for the y-axis is rearranged to determine the required superficial molar velocity of gas, G′ :

G=0.049ρG(ρLρG)gccf(μL)0.1JG^{\prime}={\sqrt{\frac{0.049\rho_{G}(\rho_{L}-\rho_{G})g_{c}}{c_{f}(\mu_{L})^{0.1}J}}}

From Table 31.2 cf=155c_{f}=155 for 1.0-inch Raschig rings. Therefore, the required superficial mass velocity of the gas is

G=0.049(1.19kgm3)(998.21.19kgm3)(1.00)(155)(993×106kg/ms)0.1(1.0)=0.865kg/m2sG^{\prime}=\sqrt{\frac{0.049\left(1.19\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)\left(998.2-1.19\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)(1.00)}{\left(155\right)\left(993\times10^{-6}\,\mathrm{kg/m}\cdot s\right)^{0.1}(1.0)}}=0.865\,\mathrm{kg/m^{2} \cdot s}

The cross-sectional area of the tower is backed out from G′ by

A=AGG=0.237kg/s0.865kg/m2s=0.274m2A={\frac{A G^{\prime}}{G^{\prime}}}={\frac{0.237\,{\mathrm{kg/s}}}{0.865\,{\mathrm{kg/m}}^{2}\cdot{\mathrm{s}}}}=0.274\,{\mathrm{m}}^{2}

and so the tower diameter is

D=4Aπ =4(0.274m2)π=0.59mD=\sqrt{\frac{4A}{\pi}\ =}\sqrt{\frac{4(0.274\,\mathrm{m}^{2})}{\pi}}=0.59\,\mathrm{m}

Table 31.2 Tower packing characteristicsy^{y}

Nominal size, in (mm)
Packing 0.25 (6) 0.50 (13) 0.75 (19) 1.00 (25) 1.50 (38) 2.00 (50)
Raschig rings
Ceramic
ϵ\epsilon 0.73 0.63 0.73 0.73 0.71 0.74
cfc_{f} 1600 909 255 155 95 65
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3} 240 111 80 58 38 28
Metal
ϵ\epsilon 0.69 0.84 0.88 0.92  \  \
cfc_{f} 700 300 155 115  \  \
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3} 236 128 83.5 62.7  \  \
Berl saddles
Ceramic
ϵ\epsilon 0.60 0.63 0.66 0.69 0.75 0.72
cfc_{f} 900 240 170 110 65 45
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3} 274 142 82 76 44 32
Intalox saddles
Ceramic
ϵ\epsilon 0.75 0.78 0.77 0.775 0.81 0.79
cfc_{f} 725 200 145 98 52 40
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3} 300 190 102 78 59.5 36
Plastic
ϵ\epsilon  \  \  \ 0.91  \ 0.93
cfc_{f}  \  \  \ 33  \ 56.5
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3}  \  \  \ 63  \ 33
Pall rings
Plastic
ϵ\epsilon  \  \  \ 0.90 0.91 0.92
ϵ\epsilon  \  \  \ 52 40 25
cfc_{f}  \  \  \ 63 39 31
Metal
ϵ\epsilon  \  \  \ 0.94 0.95 0.96
cfc_{f}  \  \  \ 48 28 20
apft2/ft3a_{p}\mathrm{ft}^{2}/\mathrm{ft}^{3}  \  \  \ 63 39 31

y^{y} R. E. Treybal, Mass-Transfer Operations, McGraw-Hill Book Company, New York, 1980.

Figure 31.23

Related Answered Questions