Question 12.19: A Pelton wheel is designed to operate under a head of 600 m ......

A Pelton wheel is designed to operate under a head of 600 m and develops 6 MW while running at 200 rpm. It is desired to test the turbine at a site where the maximum supply head is 100 m. Find out the speed, discharge and power output at the test condition. Assume an overall efficiency of 85% at the best operating point. Also find the unit quantities.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
H1=600 m;P1=6×106 W;N1=200 rpm;H2=120 m;ηo=0.85H_1=600  m ; P_1=6 \times 10^6  W ; N_1=200  rpm ; H_2=120  m ; \eta_o=0.85

From the equation for efficiency,

ηo=SPWP=SPwQH=6×1069810×Q×600\eta_o=\frac{S P}{W P}=\frac{S P}{w Q H}=\frac{6 \times 10^6}{9810 \times Q \times 600}

Discharge  Q1=6×1069810×600×0.85=1.2 m3/sQ_1=\frac{6 \times 10^6}{9810 \times 600 \times 0.85}=1.2  m ^3 / s

Since the same machine has to operate under the new head, unit quantities for the actual and test conditions are to be equated.

Unit speed          Nu=N1H1=200600=8.165N_u=\frac{N_1}{\sqrt{H_1}}=\frac{200}{\sqrt{600}}=8.165

Unit discharge  Qu=Q1H1=1.2600=0.049 Q_u=\frac{Q_1}{\sqrt{H_1}}=\frac{1.2}{\sqrt{600}}=0.049

Unit power    Pu=P1H13/2=6×1036003/2=0.408P_u=\frac{P_1}{H_1^{3 / 2}}=\frac{6 \times 10^3}{600^{3 / 2}}=0.408

Equating the unit quantities for the actual (suffix 1) and test (suffix 2) conditions, we get

N1H1=N2H2\frac{N_1}{\sqrt{H_1}}=\frac{N_2}{\sqrt{H_2}}

Speed during test N2=N1×(H2H1)1/2=200×(100600)1/2=81.65 rpmN_2=N_1 \times\left(\frac{H_2}{H_1}\right)^{1 / 2}=200 \times\left(\frac{100}{600}\right)^{1 / 2}=81.65  rpm

Q1H1=Q2H2\frac{Q_1}{\sqrt{H_1}}=\frac{Q_2}{\sqrt{H_2}}

Discharge during test  Q2=Q1×(H2H1)1/2=1.2(100600)1/2=0.49  m3/sQ_2=Q_1 \times\left(\frac{H_2}{H_1}\right)^{1 / 2}=1.2\left(\frac{100}{600}\right)^{1 / 2}=0.49   m ^3 / s

P1H13/2=P2H23/2\frac{P_1}{H_1^{3 / 2}}=\frac{P_2}{H_2^{3 / 2}}

Power developed  P2=P1×(H2H1)3/2=6×103×(100600)3/2=408  kWP_2=P_1 \times\left(\frac{H_2}{H_1}\right)^{3 / 2}=6 \times 10^3 \times\left(\frac{100}{600}\right)^{3 / 2}=408   kW

Related Answered Questions