Question 8.20: A pin-ended column of height 3.0 m has a circular cross-sect......

A pin-ended column of height 3.0 m has a circular cross-section of diameter 80 mm, wall thickness 2.0 mm, and is converted to an open section by a narrow longitudinal slit; the ends of the column are free to warp. Determine the values of axial load that would cause the column to buckle in (a) pure bending and (b) pure torsion. Hence, determine the value of the flexural–torsional buckling load. Take E = 70,000 N/mm² and G = 22,000 N/mm². Note: the position of the shear center of the column section may be found using the method described in Chapter 17.

Answer:       (a)\ 3.09\times10^{4}\,{\mathrm{N}},      ({ b})\;1.78\times10^{4}\,{ N},\,1.19\times10^{4}\,{ N}

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The separate modes of buckling are obtained from Eqs (8.77), i.e.,

P_{\mathrm{CR}(x x)}={\frac{\pi^{2}E I_{x x}}{L^{2}}}          P_{\mathrm{CR}(yy)}={\frac{\pi^{2}E I_{y y}}{L^{2}}}             P_{\mathrm{CR}(\theta)}={\frac{A}{I_{0}}}\left(G J+{\frac{\pi^{2}E \Gamma}{L^{2}}}\right)            (8.77)

 

P_{\mathrm{CR}(xx)}=P_{\mathrm{CR}(yy)}={\frac{\pi^{2}E I}{L^{2}}}\bigl(I_{x x}=I_{y y}=I,\mathrm{say}\bigr)           (i)

and

P_{\mathrm{CR}(\theta)}={\frac{A}{I_{0}}}{\bigg(}G J+{\frac{\pi^{2}E T}{L^{2}}}{\bigg)}             (ii)

In this case,

I_{x x}=I_{y y}=\pi r^{3}t=\pi\times40^{3}\times2.0=4.02\times10^{5}\,{\mathrm{mm}}^{4}

A = 2\pi r t=2\pi\times40\times2.0=502.7\,\mathrm{mm}^{2}

 

J = 2\pi rt^{3}/3=2\pi\times40\times2.0^{3}/3=670.2\,{\mathrm{mm}}^{4}

From Eq. (8.68),

T(z)={ P}\biggl(x_{S}\frac{\mathrm{d}^{2}\nu}{\mathrm{d}z^{2}}-y_{S}\frac{\mathrm{d}^{2}u}{\mathrm{d}z^{2}}\biggr)-\frac{{ P}}{A}\frac{\mathrm{d}^{2}\theta}{\mathrm{d}z^{2}}(A y_{S}^{2}+I_{x x}+A x_{S}^{2}+I_{y y})          (8.68)

 

I_{0}=I_{x x}+I_{y y}+A x_{s}^{2} (note that y_{s} = 0)

in which x_{s} is the distance of the shear center of the section from its vertical diameter; it may be shown that x_{s} = 80 mm (see S.17.3). Then

I_{0}=2\times4.02\times10^{5}+502.7\times80^{2}=4.02\times10^{6}\,{\mathrm{mm}}^{4}

The torsion-bending constant Γ is found in a similar manner to that for the section shown in Fig. P.28.3 and is given by

\Gamma=\pi r^{5}t\left({\frac{2}{3}}\pi^{2}-4\right)

i.e.,

\Gamma=\pi\times40^{5}\times2.0{\bigg(}{\frac{2}{3}}\pi^{2}-4{\bigg)}=1.66\times10^{9}\mathrm{mm}^{6}

(a)  P_{\mathrm{CR}(xx)}=P_{\mathrm{CR}(yy)}={\frac{\pi^{2}\times70000\times4.02\times10^{5}}{\left(3.0\times10^{3}\right)^{2}}}=3.09\times10^{4}\mathrm{N}

 

(b)     P_{\mathrm{CR}(\theta)}=\frac{502.7}{40.2\times10^{6}}\left(22000\times670.2+\frac{\pi^{2}\times70000\times1.66\times10^{9}}{\left(3.0\times10^{3}\right)^{2}}\right) =1.78\times10^{4}\,\mathrm{N}

The flexural-torsional buckling load is obtained by expanding Eq. (8.79). Thus,

\begin{vmatrix} P-P_{CR(xx)} & -Px_{S} \\ -Px_{S} & I_{0}(P-P_{CR(\theta)})/A) \end{vmatrix} =0             (8.79)

 

(P-P_{\mathrm{CR}(xx)})(P-P_{\mathrm{CR}(\theta)})I_{0}/A-P^{2}x_{\mathrm{s}}^{2}=0

from which

P^{2}\bigl(1-A x_{s}^{2}/I_{0}\bigr)-P\bigl(P_{\mathrm{CR}(xx)}+P_{\mathrm{CR}(\theta)}+P_{\mathrm{CR}(\theta)}\bigr)+P_{\mathrm{CR}(x x)}P_{\mathrm{CR}(\theta)}=0           (iii)

Substituting the appropriate values in Eq. (iii) gives

P-24.39\times10P^{4}+27.54\times10^{8}=0          (iv)

The solutions of Eq. (iv) are

P=1.19\times10^{4}\mathrm{N~~or~~23.21\times10^{4}\mathrm{N}}

Therefore, the least flexural-torsional buckling load is 1.19\times10^{4}\,\mathrm{N}.

s.17.3
p.28.3

Related Answered Questions

Question: 8.19

Verified Answer:

The three possible buckling modes of the column ar...
Question: 8.16

Verified Answer:

There are four boundary conditions to be satisfied...
Question: 8.15

Verified Answer:

The equation for the deflected center line of the ...