Holooly Plus Logo

Question 3.1: A pulsejet engine is employed in powering a vehicle flying a......

A pulsejet engine is employed in powering a vehicle flying at a Mach number of 2 at an altitude of 40,000 ft. The engine has an inlet area 0.084 m² . The pressure ratio at combustion chamber is P_{03}=P_{02}=9 , fuel heating value is 43,000 kJ/kg, and combustion efficiency is 0.96.
Assuming ideal diffuser (P_{02}=P_{0\text{a}}) , it is required to calculate

1. The air mass flow rate
2. The maximum temperature
3. The fuel-to-air ratio
4. The exhaust velocity
5. The thrust force
6. The thrust-specific fuel consumption (TSFC)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

At altitude 40,000 ft, the ambient temperature and pressure are 216.65 K and 18.75 kPa, respectively.
The flight speed is

\begin{matrix} U&=&M\sqrt{\gamma RT_\text{a}} =2\sqrt{1.4 \times 287 \times 216.65} \\ &=& 590 \text{ m/s} \end{matrix}

The air mass f low rate is

\dot{m}_{\text{a}}=\rho_{\text{a}}UA_{\text{i}}=\frac{P_{\text{a}}}{RT_{\text{a}}} UA_{\text{i}}=14.99 \text{ kg/s}

Diffuser: The total temperature at the intake is equal to the total upstream temperature, or

\begin{matrix} T_{02} &=& T_{0\text{a}}=T_{\text{a}}\left(1+\frac{\gamma_{\text{c}}-1}{2}M^2 \right) \\ &=& 216.65\left(1+\frac{1.4-1}{2} \times 2^2 \right) \\&=&390 \text{ K} \end{matrix}

The total pressure at the diffuser outlet also equals the free stream total pressure, as the flow through the diffuser is assumed ideal.

\begin{matrix} P_{02}&=&P_{0\text{a}}=P{\text{a}}\left(\frac{T_{0\text{a}}}{T_{\text{a}}} \right)^{\frac{\gamma}{\gamma-1} } \\ P_{02}&=&146.7 \text{ kPa} \end{matrix}

Combustion Chamber: A constant volume process is assumed; then

\begin{matrix} T_{03}&=&T_{02}\left(\frac{P_{03}}{P_{02}} \right) \\ &=&9T_{02}=3510 \text{ K} \end{matrix}

The fuel-to-air ratio is calculated from Equation 3.6 (f=\frac{C_{p_{\text{h}}}T_{03}-C_{p_{\text{c}}}T_{02}}{\eta_{\text{b}}Q_{\text{R}}-C_{p_{\text{h}}}T_{03}} ) as

\begin{matrix} f&=&\frac{1.148 \times 3510-1.005 \times 390}{0.96 \times 43,000-1.148 \times 3510} \\ &=& 0.0976 \end{matrix}

Tail pipe: The exhaust speed is calculated from Equation 3.8 (U_{\text{e}}=\sqrt{2C_{p_{\text{h}}}T_{03}\left[1-\left(\frac{P_{\text{a}}}{P_{03}} \right)^{\frac{\gamma_{\text{h}}-1}{\gamma_{\text{h}}} } \right] }) as

\begin{matrix} U_{\text{e}}&=&\sqrt{2 \times 1148 \times 3510\left[1-\left(\frac{18.75_{\text{a}}}{1320.3} \right)^{0.25} \right] } \\ &=& 2297 \text{ m/s} \end{matrix}

The specific thrust is

\frac{T}{\dot{m}_{\text{a}}} =(1+f)U_{\text{e}}-U \\ \frac{T}{\dot{m}_{\text{a}}} =1931.4\frac{\text{N.s}}{\text{kg}}

The thrust force is then T=\dot{m}_{\text{a}}(T/\dot{m}_{\text{a}})=28955 \text{ N}
The TSFC is calculated from Equation 3.10 (\text{TSFC}=\frac{\dot{m}_{\text{f}}}{T} =\frac{f}{(T/\dot{m}_{\text{a}})} )

\begin{matrix} \text{TSFC}&=&\frac{0.0976}{1931.4} =5.06 \times 10^{-5}\frac{\text{kg}}{\text{N.s}} \\ \text{TSFC}&=& 0.182 \frac{\text{kg}}{\text{N.s}} \end{matrix}

Related Answered Questions