Question 10.1: A series–parallel circuit is shown in Fig. 10.4. Calculate t......

A series–parallel circuit is shown in Fig. 10.4. Calculate the current gain \frac{I_{0}(\omega)}{I_{i(\omega)}} and its zeros and poles.ω

10.4
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The output current can be determined as,

I_{0}(\omega)=I_{i}(\omega)\times\frac{(1+j2\omega)}{1+j2\omega+2+\frac{1}{j0.5\omega}}     (10.12)

\frac{I_{0}(\omega)}{I_{i}(\omega)}=\frac{j0.5\omega(1+j2\omega)}{(1+j2\omega+2)j0.5\omega+1}    (10.13)

Considering s = jω, Eq. (10.13) can be modified as,

\frac{I_{0}(\omega)}{I_{i}(\omega)}=\frac{0.5s(1+2s)}{(1+2s+2)0.5s+1}     (10.14)

{\frac{I_{0}(\omega)}{I_{i}(\omega)}}={\frac{s(s+0.5)}{s^{2}+1.5s+1}}     (10.15)

Setting the numerator of Eq. (10.15) equal to zero yields,

s(s+0.5)=0     (10.16)

z_{1}=0,\;z_{2}=-0.5    (10.17)

Setting the denominator of Eq. (10.15) equal to zero yields,

s^{2}+1.5s+1=0    (10.18)

s_{1,2}={\frac{-1.5\pm{\sqrt{1.5^{2}-4}}}{2}}    (10.19)

p_{1}=-0.75+j0.66,\;p_{2}=-0.75-j0.66    (10.20)

Related Answered Questions