(a) Show that the line integral
\int_{C}(y+y z) d x+\left(x+3 z^{3}+x z\right) d y+\left(9 y z^{2}+x y-1\right) d z
is independent of the path C between (1,1,1) to (2,1,4).
(b) Evaluate \int_{(1,1,1)}^{(2,1,4)} \mathrm{F} \cdot d \mathrm{r}.
(a) With the identifications
\begin{aligned} & \mathrm{F}(x, y, z)=(y+y z) \mathrm{i}+\left(x+3 z^{3}+x z\right) \mathrm{j}+\left(9 y z^{2}+x y-1\right) \mathrm{k} \\ & P=y+y z, \quad Q=x+3 z^{3}+x z, \quad \text { and } \quad R=9 y z^{2}+x y-1 \end{aligned}
we see that the equalities
\frac{\partial P}{\partial y}=1+z=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=y=\frac{\partial R}{\partial x}, \quad \text { and } \quad \frac{\partial Q}{\partial z}=9 z^{2}+x=\frac{\partial R}{\partial y}
hold throughout 3-space. From (12) we conclude that \mathrm{F} is conservative and therefore the integral is independent of the path.
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} (12)
(b) The path C shown in FIGURE 9.9.6 represents any path with initial and terminal points (1,1,1) and (2,1,4). To evaluate the integral we again illustrate how to find a potential function \phi(x, y, z) for \mathrm{F} using partial integration.
First we know that
\frac{\partial \phi}{\partial x}=P, \quad \frac{\partial \phi}{\partial y}=Q, \quad \text { and } \quad \frac{\partial \phi}{\partial z}=R
Integrating the first of these three equations with respect to x gives
\phi=x y+x y z+g(y, z)
The derivative of this last expression with respect to y must then be equal to Q :
\frac{\partial \phi}{\partial y}=x+x z+\frac{\partial g}{\partial y}=x+3 z^{3}+x z.
Hence,
\frac{\partial g}{\partial y}=3 z^{3} \text { implies } g=3 y z^{3}+h(z).
Consequently, \phi=x y+x y z+3 y z^3+h(z).
The partial derivative of this last expression with respect to z must now be equal to the function R :
\frac{\partial \phi}{\partial z}=x y+9 y z^{2}+h^{\prime}(z)=9 y z^{2}+x y-1.
From this we get h^{\prime}(z)=-1 and h(z)=-z+K. Disregarding K, we can write
\phi=x y+x y z+3 y z^{3}-z . (13)
Finally, from (11) and the potential function (13) we obtain
\int_C F \cdot d r =\int_C \nabla \phi \cdot d r =\phi(x(b), y(b), z(b))-\phi(x(a), y(a), z(a))=\phi(B)-\phi(A) . (11)
\begin{array}{r} \int_{(1,1,1)}^{(2,1,4)}(y+y z) d x+\left(x+3 z^{3}+x z\right) d y+\left(9 y z^{2}+x y-1\right) d z \\ \left.=\left(x y+x y z+3 y z^{3}-z\right)\right]_{(1,1,1)}^{(2,1,4)}=198-4=194 . \end{array}