Holooly Plus Logo

Question 16.16: A shunt DC motor that has been connected to a variable mecha......

A shunt DC motor that has been connected to a variable mechanical load is supplied by a 200 V power source. When the motor is under load A, its speed and current are 157 rad/s and 20 A. However, when the motor is under load B, its speed and current are 167.5 rad/s and 18 A. Calculate the torque of the loads. Herein, ignore the field current.

Difficulty level ○ Easy ○ Normal ● Hard

Calculation amount ○ Small ● Normal ○ Large

1) T_A=13.7\ N.m, T_B=15.2\ N.m

2) T_A=20.2\ N.m, T_B=17.2\ N.m

3) T_A=15.2\ N.m, T_B=13.7\ N.m

4) T_A=10.2\ N.m, T_B=8.2\ N.m

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Based on the information given in the problem, we have:

V_t=200\ V        (1)

\omega_A=157\ rad/sec        (2)

I_{t,A}=20\ A        (3)

\omega_B=167.5\ rad/sec        (4)

I_{t,B}=18\ A        (5)

I_f\approx 0\ A        (6)

From (6), we have:

I_a=I_t        (7)

Method 1: As we know, the induced armature voltage of an electric machine can be determined by using E_a = k_aφω. Therefore, we can write:

\frac{E_{a,A}}{E_{a,B}}=\frac{φ_Aω_A}{φ_Bω_B}        (8)

Since V_{t,B}=V_{t,A}, we have:

I_{f,B}=I_{f,A}\Rightarrow φ_B=φ_A        (9)

Therefore:

\frac{E_{a,A}}{E_{a,B}}=\frac{\omega_A}{\omega_B}        (10)

Figure 16.16 shows the electrical circuit of a shunt DC motor. Applying KVL in the right-hand side mesh of the circuit:

E_a=V_t-R_aI_a        (11)

Solving (10) and (11):

\frac{V_t-R_aI_{a,A}}{V_t-R_aI_{a,B}}=\frac{\omega_A}{\omega_B}        (12)

 

\Rightarrow \frac{200-20R_a}{200-18R_a}=\frac{157}{167.5}\Rightarrow R_a\simeq 4\ \Omega        (13)

The air gap power, when the motor is under load A, can be calculated as follows:

P_{ag,A}=P_{in,A}-P_{cu,A}=V_tI_{t,A}-R_aI_{a,A^2}        (14)

 

\Rightarrow P_{ag,A}=(200\times 20)-(4\times 20^2)=2400\ W        (15)

The developed electromagnetic torque, when the motor is under load A, can be calculated as follows:

\pmb{T_{e,A}}=\frac{P_{ag,A}}{\omega_A}=\frac{2400}{157}\approx \pmb{15.2\ N.m}        (16)

The air gap power, when the motor is under load B, can be calculated as follows:

P_{ag,B}=P_{in,B}-P_{cu,B}=V_tI_{t,B}-R_aI_{a,B^2}        (17)

 

\Rightarrow P_{ag,B}=(200\times 18)-(4\times 18^2)=2304\ W        (18)

The developed electromagnetic torque, when the motor is under load B, can be calculated as follows:

\pmb{T_{e,B}}=\frac{P_{ag,B}}{\omega_B}=\frac{2304}{167.5}\approx \pmb{13.7\ N.m}        (19)

Method 2: As we know, the induced armature voltage of an electric machine can be determined by using E_a=k_aφω=k^\prime_aω. Applying KVL in the right-hand side mesh of the circuit of Fig. 16.16:

V_t=E_a+R_aI_a=k^\prime_a\omega+R_aI_a        (20)

 

\Rightarrow \begin{cases} V_t=k^\prime_a\times \omega_A+R_aI_{a,A} \\ V_t=k^\prime_a\times \omega_B+R_aI_{a,B} \end{cases} \Rightarrow \begin{cases} 200=k^\prime_a\times 157+20R_a \\ 200=k^\prime_a\times 167.5+18R_a \end{cases}         (21)

 

\Rightarrow R_a=4\ \Omega,\ k^\prime_a=0.7625        (22)

As we know, the electromagnetic torque of an electric machine can be determined by using T_e=k_aφI_a=k^\prime_aI_a. Therefore, we can write:

\pmb{T_{ag,A}}=k^\prime_aI_{a,A}=0.7625\times 20\approx \pmb{15.2\ N.m}\\[0.3cm] \pmb{T_{ag,B}}=k^\prime_aI_{a,B}=0.7625\times 18\approx \pmb{13.7\ N.m}

Choice (3) is the answer.

16.16

Related Answered Questions

Question: 16.11

Verified Answer:

Based on the information given in the problem, we ...