Question 7.DE.8: A single-stage axial flow gas turbine with equal stage inlet......

A single-stage axial flow gas turbine with equal stage inlet and outlet velocities has the following design data based on the mean diameter:
Mass flow                                                                          20 kg/s
Inlet temperature, T_{01}                                                    1150 K
Inlet pressure                                                                   4 bar
Axial flow velocity constant through the stage       255 m/s
Blade speed, U                                                                 345 m/s
Nozzle efflux angle, α_2                                                    60°
Gas-stage exit angle                                                        12°
Calculate (1) the rotor-blade gas angles, (2) the degree of reaction, blade-loading coefficient, and power output and (3) the total nozzle throat area if the throat is situated at the nozzle outlet and the nozzle loss coefficient is 0.05.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(1) From the velocity triangles
C_{w2} = Ca \tanα_2
= 255 tan 60° = 441.67 m/s
C_{w3} = Ca \tanα_3 = 255 tan 12° = 55.2 m/s
V_{w2} = C_{w2} – U = 441.67 – 345 = 96.67 m/s
β_2 = \tan^{-1} \frac{V_{w2}} {Ca} = \tan ^{-1} \frac{96.67} {255} = 20.8°
Also V_{w3} = C_{w3} + U = 345 + 55.2 = 400.2 m/s
β_3 = \tan {-1} \frac{V_{w3}}{Ca} = \tan {-1} \frac{400.2} {255} = 57.5°
(2) Λ = \frac{Φ} {2}(\tanβ_3 – \tanβ_2)
= \frac{255} {2 \times 345}(\tan57.5° + \tan20.8°) = 0.44
Ψ = \frac{Ca}{U}(\tanβ_2 + \tanβ_3)
= \frac{255} {345}(\tan20.8° + \tan57.5°) = 1.44
Power W = mU (C_{w2} + C_{w3})
= (20)(345)(441.67 + 54.2) = 3421.5 kW
(3) λ_N = \frac{C_p (T_2 – T^′_2)}{\frac{1}{2}C^2_2}, C_2 = Ca  \text{sec} α_2 = 255 sec 60° = 510 m/s
or T_2 – T^′_2 = \frac{(0.05)(0.5)(510^2)}{1147} = 5.67
T_2 = T_{02} – \frac{C^2_2}{2C_p} = 1150 – \frac{510^2} {(2)(1147)} = 1036.6 K
T^′_2 = 1036.6 – 5.67 = 1030.93 K
\frac{p_{01}} {p_2} = \left(\frac{T_{01}}{T_2}\right)^{γ/(γ – 1)} = \left(\frac{1150}{1030.93}\right)^4 = 1.548
p_2 = \frac{4} {1.548} = 2.584 bar
ρ_2 = \frac{p_2} {RT_2} = \frac{2.584 \times 100} {0.287 \times 1036.6} = 0.869 kg/m³
m = ρ_2A_2C_2
A_2 = \frac{20} {0.869 \times 510} = 0.045 m²

Related Answered Questions