Question 5.23: A small circular loop of radius a is centered at the origin ......

A small circular loop of radius a is centered at the origin in the xyplane, carrying a current I in the counterclockwise direction in a uniform magnetic flux density \pmb{B}= B_{y} \pmb{a}_{y}+ B_{z} \pmb{a}_{z}, as shown in Fig. 5.40. Find the torque on the loop about the origin.

5.40
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Eq. (5-135b), the differential magnetic force on a differential current element I d\pmb{l}= I a d\phi \pmb{a}_{\phi } is

\boxed{\pmb{F}_{m} =I \oint_{C}{d\pmb{l}\times \pmb{B}}}                                        [N]                                        (5-135b)

d\pmb{F} = I a d\phi \pmb{a}_{\phi }\times (B_{y} \pmb{a}_{y}+ B_{z} \pmb{a}_{z})\\ \quad \quad = – a I B_{y}\sin \phi d\phi \pmb{a}_{z} + aIB_{z}d\phi \pmb{a}_{\rho } \\ \quad \quad \equiv \pmb{F}_{1} +\pmb{F}_{2}

The differentia torque about the origin due to Idl is

d\pmb{T} =\pmb{r} \times (\pmb{F}_{1} +\pmb{F}_{2}) = a \pmb{a}_{\rho } \times (- a I B_{y} \sin \phi d\phi \pmb{a}_{z } + a I B_{z} d \phi \pmb{a}_{\rho })\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad = a^{2} I B_{y} \sin \phi d\phi \pmb{a}_{\phi }

The net torque on the loop is

\pmb{T}=\int{d\pmb{T}} = a^{2} I B_{y} \int_{\phi =0}^{\phi =2\pi }{ \pmb{a}_{\phi } \sin \phi d\phi }                                                   (5-151)

The unit vector \pmb{a}_{\phi } cannot be taken outside the integral sign, because it is a function of Φ. Using the relation \pmb{a}_{\phi } = -\sin \phi \pmb{a}_{x} + \cos \phi \pmb{a}_{y}, Eq. (5-151) is rewritten as

\pmb{T}= a^{2} I B_{y} \int_{\phi =0}^{\phi =2\pi }{ (-\sin ^{2}\phi \pmb{a}_{x} + \sin \phi \cos \phi \pmb{a}_{y}) d\phi } \\ \quad =- \pi a^{2}IB_{y}\pmb{a}_{x}

With the aid of the magnetic dipole moment \pmb{m}= \pi a^{2}I\pmb{a}_{z}, the torque on the loop is, in vector notation,

\pmb{T = m \times B}                                               (5-152)

We see from Eqs. (5-150) and (5-152) that the torque on a current-carrying loop has the same form, in vector notation, regardless of the shape of the loop.

\boxed{\pmb{T = m \times B}}                                               [N m]⋅                                        (5-150)

Related Answered Questions