A spacecraft is in a 280 km by 400 km orbit with an inclination of 51.43°. Find the rates of node regression and perigee advance.
The perigee and apogee radii are
r_{p}=6378+280=6658\,{\mathrm{km}}\quad r_{a}=6378+400=6778\,{\mathrm{km}}
Therefore, the eccentricity and semimajor axis are
e={\frac{r_{a}-r_{\mathrm{p}}}{r_{a}+r_{\mathrm{p}}}}=0.008931
a={\frac{1}{2}}\left(r_{a}+r_{\mathrm{p}}\right)=67\,18\,\mathrm{km}
From Eqn (4.52), we obtain the rate of node line regression.
\dot{Ω}=-\left[{\frac{3}{2}}{\frac{\sqrt{\mu}J_{2}R^{2}}{{(1-e^{2})}^{2}a^\frac{7}{2}}}\right]\cos i ( 4.52)
{\dot{\Omega}}=-\left[{\frac{3}{2}}{\frac{\sqrt{398.600}\times 0.0010826 \times6378^{2}}{\left(1-0.0089312^{2}\right)^{2}\times6718^{7/2}}}\right]\cos51.43^{\circ}=-1.0465\times10^{-6}\,\,\mathrm{rad/s}
or
{\dot{\Omega}}= 5.181° per day to the west
From Eqn (4.54),
\dot{\omega}=\dot{\Omega}\frac{(5/2)\sin^{2}i-2}{\cos i} (4.54)
\dot{\omega}=-1.0465\times10^{-6} . \left(\frac{5}{2}\mathrm{sin}^{2}51.43^{\circ}-2\right)=+7.9193\times10^{-7}\mathrm{~rad/s}
or
\dot{\omega}= 3.920° per day in the flight direction