Question 26.9: A symmetric laminate consists of four generally orthotropic ......

A symmetric laminate consists of four generally orthotropic plies in which the ply angle for the two inner plies is 45° while that for the two outer plies is 30°. If the thickness of each ply is 0.15 mm and the ply elastic constants are E_{l}\!=\!140{\mathrm{~}}000\ {\mathrm{N/m}}\,^{2},\,E_{t}\!=\!10,000\ {\mathrm{N/mm}}^{2}, G_{l I}{=}5000\,\mathrm{N/mm^{2}},\,\mathrm{and}\ \nu=0.3, determine the equivalent elastic constants for the laminate.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Eq. (26.14), the minor Poisson’s ratio is given by

\frac{\nu_{t l}}{E_t}=\frac{\nu_{l t}}{E_l}        (26.14)

\nu_{ tl }=0.3 \times \frac{10000}{140000}=0.021

The reduced stiffnesses are then, from Eqs (26.17),

\left\{\begin{array}{l}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_l}{1-\nu_{l t}\nu_{t l}} & \frac{\nu_{t l} E_l}{1-\nu_{lt} \nu_{t l}} & 0 \\\frac{\nu_{l t} E_t}{1-\nu_{l t} \nu_{t l}} &\frac{E_t}{1-\nu_{l t} \nu_{t l}} & 0 \\0 & 0 & G_{l t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_l \\\varepsilon_t \\\gamma_{l t}\end{array}\right\}          (26.17)\begin{aligned}& k_{11}=140000 /(1-0.3 \times 0.021)=140888 N / mm ^2 \\ & k_{22}=10000 /(1-0.3 \times 0.021)=10063 N / mm ^2 \\ & k_{33}=G_{1 t }=5000 N / mm ^2 \\ & k_{12}=0.021 \times 140000 /(1-0.3 \times 0.021)=2959 N / mm ^2 \end{aligned}

Also, k_{13}=0,\,k_{23}=0,\,k_{31}=0,\,k_{32}=0.

For plies 2 and 3, θ=45° so that m=n=1/√2. Then, from Eqs (26.38) and (26.31),

\begin{gathered}\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^4k_{11}+m^2 n^2\left(2 k_{12}\right. & m^2n^2\left(k_{11}+k_{22}-4 k_{33}\right) & m^3n\left(k_{11}-k_{12}-2 k_{33}\right) \\\left.+4k_{33}\right)+n^4 k_{22} &+\left(m^4+n^4\right) k_{12} & +m n^3\left(k_{12}-k_{22}+2 k_{33}\right) \\m^2 n^2\left(k_{11}+k_{22}-4k_{33}\right) & n^4 k_{11}+m^2 n^2\left(2 k_{12}\right. & m n^3\left(k_{11}-k_{12}-2 k_{33}\right) \\+\left(m^4+n^4\right) k_{12} &\left.+4 k_{33}\right)+m^4 k_{22} & +m^3n\left(k_{12}-k_{22}+2 k_{33}\right) \\m^3 n\left(k_{11}-k_{12}-2 k_{33}\right) & m n^3\left(k_{11}-k_{12}-2 k_{33}\right) & m^2 n^2\left(k_{11}+k_{22}-2k_{12}\right. \\+mn^3\left(k_{12}+k_{22}+2 k_{33}\right) & +m^3n\left(k_{12}-k_{22}+2 k_{33}\right) & \left.-2k_{33}\right)+\left(m^4+n^4\right) k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}\end{gathered}          (26.31)\left\{\begin{array}{c}\sigma_x \\\sigma_y \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\bar{k}_{11} & \bar{k}_{12} & \bar{k}_{13} \\\bar{k}_{12} & \bar{k}_{22} & \bar{k}_{23} \\\bar{k}_{13} & \bar{k}_{23} & \bar{k}_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_x \\\varepsilon_y \\\gamma_{x y}\end{array}\right\}        (26.38)

\bar{k}_{11}=(1 / \sqrt{2})^4 \times 140888+(1 /\sqrt{2})^2(1 / \sqrt{2})^2(2 \times 2959+4 \times 5000)+(1 / \sqrt{2})^4 \times 10063=44166 N / mm ^2

Similarly,

\begin{aligned}& \bar{k}_{22}=34300 N / mm ^2 \\& \bar{k}_{33}=36300 N / mm ^2 \\&\bar{k}_{12}=34300 N / mm ^2 \\&\bar{k}_{13}=32700 N / mm ^2 \\&\bar{k}_{21}=34300 N / mm ^2 \\&\bar{k}_{23}=32700 N / mm ^2\end{aligned}

For plies 1 and 4, θ=30° so that m=√3/2 and n=0.5. Again, from Eqs (26.38) and (26.31),

\begin{aligned}& \bar{k}_{11}=84800 N / mm ^2 \\& \bar{k}_{22}=19400 N / mm ^2 \\&\bar{k}_{33}=28400 N / mm ^2 \\&\bar{k}_{12}=26400 N / mm ^2 \\&\bar{k}_{13}=41900 N / mm ^2 \\&\bar{k}_{23}=14800 N / mm ^2\end{aligned}

Now, from Eqs (26.47),

A_{ ij }=\sum\limits_{ p =1}^{ N } t_{ p }\left(\bar{k}_{ ij }\right)_{ p } \quad( i =1,2,3, \ldots, j =1,2,3, \ldots)          (26.47)

\begin{aligned}& A_{11}=2 \times 0.15(44166+84800)=3.9 \times 10^4 N / mm \\& A_{22}=2 \times 0.15(44166+19400)=1.9 \times 10^4 N / mm \\& A_{33}=2 \times 0.15(36300+28400)=1.9 \times 10^4 N /mm \\& A_{12}=2 \times 0.15(34300+26400)=1.8 \times 10^4 N / mm \\& A_{13}=2 \times 0.15(32700+41900)=2.2 \times 10^4 N / mm \\& A_{23}=2 \times 0.15(32700+14800)=1.4 \times 10^4 N / mm\end{aligned}

Then, from Eq. (26.53),

A A=A_{11} A_{22} A_{33}+2 A_{12} A_{23}A_{13}-A_{22} A_{13}{ }^2-A_{33} A_{12}{ }^2-A_{11} A_{23}{ }^2          (26.53)

A A=\left(3.9 \times 1.9 \times 1.9+2 \times 1.8 \times 1.4 \times 2.2-1.9 \times 2.2^2-1.9 \times 1.8^2-3.9 \times 1.4^2\right) \times 10^{12}

which gives

A A=2.2\times10^{12}

From Eqs (26.52),

\begin{aligned}& a_{11}=\left(A_{22} A_{33}-A_{23}{ }^2\right) / A A \\& a_{22}=\left(A_{11} A_{33}-A_{13}{ }^2\right) / A A \\& a_{33}=\left(A_{11} A_{22}-A_{12}{ }^2\right) / A A \\& a_{12}=\left(A_{13} A_{23}-A_{12} A_{33}\right) / A A \\& a_{13}=\left(A_{12}A_{23}-A_{22} A_{13}\right) / A A \\& a_{23}=\left(A_{12} A_{13}-A_{11} A_{23}\right) / A A\end{aligned}          (26.52)
\begin{aligned}& a_{11}=\left(1.9 \times 1.9-1.4^2\right) \times 10^8 / 2.2 \times 10^{12}=0.75 \times 10^{-4} \\& a_{22}=\left(3.9 \times 1.9-2.2^2\right)\times 10^8 / 2.2 \times 10^{12}=1.17 \times 10^{-4} \\&a_{33}=\left(3.9 \times 1.9-1.8^2\right) \times 10^8 /2.2 \times 10^{12}=1.9 \times 10^{-4} \\& a_{12}=(2.2\times 1.4-1.8 \times 1.9) \times 10^8 / 2.2 \times 10^{12}=-0.15 \times 10^{-4} \\& a_{13}=(1.8 \times 1.4-1.9 \times 2.2) \times 10^8 / 2.2 \times 10^{12}=-0.75\times 10^{-4} \\& a_{23}=(1.8 \times 2.2-3.9 \times 1.4) \times 10^8 / 2.2 \times 10^{12}=-0.68\times 10^{-4}\end{aligned}

From Eq. (26.56),

E_{x}={\frac{1}{t a_{11}}}          (26.56)

E_x=\frac{1}{4 \times 0.15 \times 0.75 \times 10^{-4}}=22222 N / mm ^2

From Eq. (26.59),

E_{y}={\frac{1}{t a_{22}}}          (26.59)

E_y=\frac{1}{4 \times 0.15 \times 1.17 \times 10^{-4}}=14245 N / mm ^2

From Eq. (26.62),

\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{t a_{33}}=G_{x y}            (26.62)

G_{x y}=\frac{1}{4 \times 0.15 \times 1.9 \times 10^{-4}}=8771 N / mm ^2

From Eq. (26.57),

\nu_{x y}=\frac{-\varepsilon_y}{\varepsilon_x}=\frac{-a_{12}}{a_{11}}          (26.57)

\nu_{x y}=-\frac{\left(-0.15 \times 10^{-4}\right)}{0.75 \times 10^{-4}}=0.2

From Eq. (26.60),

\nu_{y x}=\frac{-a_{12}}{a_{22}}           (26.60)

\nu_{y x}=-\frac{\left(-0.15 \times 10^{-4}\right)}{1.17 \times 10^{-4}}=0.13

From Eq. (26.58),

\frac{\gamma_{x y}}{\varepsilon_x}=\frac{a_{13}}{a_{11}}=-m_x          (26.58)

m_x=-\frac{\left(-0.75 \times 10^{-4}\right)}{0.75 \times 10^{-4}}=1.0

From Eq. (26.61),

m_{\mathrm{y}}={\frac{-a_{23}}{a_{22}}}          (26.61)

m_y=-\frac{\left(-0.68 \times 10^{-4}\right)}{1.17 \times 10^{-4}}=0.58

Related Answered Questions