Holooly Plus Logo

Question C.1: A two-pole synchronous machine is carrying balanced three-ph......

A two-pole synchronous machine is carrying balanced three-phase armature currents

i_a = \sqrt{2}I_a  cos ωt \quad i_b = \sqrt{2}I_a  cos (ωt  –  120°) \quad  i_c = \sqrt{2}I_a  cos (ωt + 120°)

The rotor is rotating at synchronous speed ω, and the rotor direct axis is aligned with the stator phase-a axis at time t = 0. Find the direct- and quadrature-axis current components.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The angle between the rotor direct axis and the stator phase-a axis can be expressed as

\theta_{\mathrm{me}}=\omega t

From Eq. C. 1

\left[\begin{array}{l}S_{\mathrm{d}} \\S_{\mathrm{q}} \\S_{0}\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}\cos \left(\theta_{\mathrm{me}}\right) & \cos \left(\theta_{\mathrm{me}}-120^{\circ}\right) & \cos \left(\theta_{\mathrm{me}}+120^{\circ}\right) \\-\sin \left(\theta_{\mathrm{me}}\right) & -\sin \left(\theta_{\mathrm{me}}-120^{\circ}\right) & -\sin \left(\theta_{\mathrm{me}}+120^{\circ}\right) \\\frac{1}{2} & \frac{1}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}S_{\mathrm{a}} \\S_{\mathrm{b}} \\S_{\mathrm{c}}\end{array}\right] \quad \quad \quad (C.1)

\\ \begin{aligned}i_{\mathrm{d}} & =\frac{2}{3}\left[i_{\mathrm{a}} \cos \omega t+i_{\mathrm{b}} \cos \left(\omega t-120^{\circ}\right)+i_{\mathrm{c}} \cos \left(\omega t+120^{\circ}\right)\right] \\ \\& =\frac{2}{3} \sqrt{2} I_{\mathrm{a}}\left[\cos ^{2} \omega t+\cos ^{2}\left(\omega t-120^{\circ}\right)+\cos ^{2}\left(\omega t+120^{\circ}\right)\right]\end{aligned}

Using the trigonometric identity \cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha) gives

i_{\mathrm{d}}=\sqrt{2} I_{\mathrm{a}}

Similarly,

\begin{aligned}i_{\mathrm{q}}= & -\frac{2}{3}\left[i_{\mathrm{a}} \sin \omega t+i_{\mathrm{b}} \sin \left(\omega t-120^{\circ}\right)+i_{\mathrm{c}} \sin \left(\omega t+120^{\circ}\right)\right] \\ \\= & -\frac{2}{3} \sqrt{2} I_{\mathrm{a}}\left[\cos \omega t \sin \omega t+\cos \left(\omega t-120^{\circ}\right) \sin \left(\omega t-120^{\circ}\right)\right.\\ \\& \left.+\cos \left(\omega t+120^{\circ}\right) \sin \left(\omega t+120^{\circ}\right)\right]\end{aligned}

and using the trigonometric identity \cos \alpha \sin \alpha=\frac{1}{2} \sin 2 \alpha gives

i_{\mathrm{q}}=0

This result corresponds directly to our physical picture of the dq0 transformation. From the discussion of Section 4.5 we recognize that the balanced three-phase currents applied to this machine produce a synchronously rotating mmf wave which produces flux along the stator phase-a axis at time t = 0. This flux wave is thus aligned with the rotor direct axis at t = 0 and remains so since the rotor is rotating at the same speed. Hence the stator current produces only direct-axis flux and thus consists only of a direct-axis component.