Holooly Plus Logo

Question 18.13: A uniform two span continuous bridge shown in Fig. 18.35 wit......

A uniform two span continuous bridge shown in Fig. 18.35 with flexural stiffness EI idealized as lumped mass. Let us formulate the equation of motion subjected to vertical motion at 1, 2, 3 as u_{g 1}, u_{g 2}, u_{g 3} at supports.

4
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Formulation stiffness matrix 10 × 10. Assuming translational displacement as master and other degrees of freedom as slaves we get reduced stiffness matrix of size 5 × 5.

                 [K]=\frac{E I}{L^3}\left[\begin{array}{ccccc}236.5 & 92.4 & -87.6 & -226.2 & -15.6 \\92.4 & 236.7 & -15.3 & -226.2 & -83.3 \\-87.6 & -15.3 & 38.7 & 61.5 & 2.58 \\-226.2 & -226.2 & 61.5 & 329.1 & 61.5 \\-15.6 & -83.3 & 2.58 & 61.5 & 38.7\end{array}\right]

                         =\left[\begin{array}{cc}k & k_g \\k_g^{ T } & k_{g g}\end{array}\right]

where

                 \left[k_g\right]=\frac{E I}{L^3}\left[\begin{array}{lll}-87.6 & -226.2 & -15.6 \\-15.3 & -226.2 & -83.3\end{array}\right]

                \left[k_{g g}\right]=\frac{E I}{L^3}\left[\begin{array}{ccc}38.7 & 61.5 & 2.58 \\61.5 & 329.1 & 61.5 \\2.58 & 61.5 & 38.7\end{array}\right]

                k\left\lgroup\begin{array}{l}u_1 \\u_2\end{array}\right\rgroup+k g\left\lgroup\begin{array}{l}u_3 \\u_4 \\u_5\end{array}\right\rgroup=0

                                              \left\lgroup\begin{array}{l}u_1\\u_2\end{array}\right\rgroup=-[k]^{-1} k g\left\lgroup\begin{array}{l}u_3 \\u_4 \\u_5\end{array}\right\rgroup

                                              \left\{\begin{array}{l}U_1\\U_2\end{array}\right\}=\left[\begin{array}{ccc}0.406 & 0.687 & -0.09375 \\-0.09375&0.687&0.406\end{array}\right]\left\{\begin{array}{l}U_3 \\U_4 \\U_5\end{array}\right\}

The influence vectors associated with each support are

                 i_1=\left[\begin{array}{c}0.406  25 \\-0.093  75\end{array}\right]

                 i_2=\left[\begin{array}{l}0.687  50 \\0.687  50\end{array}\right]

                 i_3=\left[\begin{array}{c}-0.093  75 \\0.406  25\end{array}\right]

We could obtain the above influence vector using a strength of materials approach, as shown below.

Apply unit load at 3 (to get influence vector i_1)

Moment at 4 = L

Rotation at 4 = \frac{L^2}{3EI}

Hence u_{2}=-\frac{M L^{2}}{{16}E I}=-\frac{L^{3}}{{16}E I}

Displacement at the free end u_{3}=\frac{L^{3}}{3E I}+\frac{L^{3}}{3E I}=\frac{2L^{3}}{3E I}

Calculate u_2 when u_3 = 1

That is given by

-\frac{L^{3}\ \ 3E I}{16E I\ \ 2L^{3}}=\frac{3}{32}= \mathrm{-}0.093~ 75

The – sign shown the deflection at 2 is downward.

Now calculate deflection at 1 due to unit load at 3= deflection at 3 due to unit load at 1.

Apply unit load at 1

Rotation at 4=\frac{L^{2}}{2\times3E I}=\frac{L^{2}}{6E I}

Deflection at 1={\frac{(0.5L)^{3}}{3E I}}+{\frac{L^{2}}{6E I}}\,{\frac{L}{{2}}}={\frac{L^{3}}{8E I}}

Slope at 1=\frac{L^{2}}{6EI}+\frac{L^{2}}{8E I}=\frac{7L^{2}}{24E I}

Deflection at 3=\frac{L^{3}}{8E I}+\frac{7L^{2}}{24E I}\frac{L}{2}=\frac{13L^{3}}{48E I}

Both deflections at 3 and 1 are upwards and hence positive.

If u_3 = 1 let us calculate what is u_1. It is given by

\frac{13L^{3}}{48E I}\frac{3E I}{2L^{3}}=\frac{13}{32}=0.406\,25

Hence

{i}_{1}\,=\,\left\{\begin{array}{l}{{0.406\,25}}\\ {{-\displaystyle0.093\,75}}\end{array}\right\}

To find the influence vector i_2, apply unit load at 4 and find the deflection at 1 and 4. The deflection at 4 due to unit load at 4 is given by L^3 /6EI. If the load is at a distance of ×2 and the deflection is to be calculated at ×1, then deflection at ×1 is given by

u_{1}=u_{2}\,=\,\frac{x_{1}\,\,\,x_{2}}{6E I\,\,2L}(4L^{2}\,-\,x_{1}^{\,2}\,-\,x_{2}^{\,2}\,)\\

= \frac{(L/2)(L)}{6E I\ 2L}(4L^{2}-L^{2} – L^{2}/4)=\frac{11L^{3}}{96E I}

When the deflection at 4 is equal to 1 what is the deflection at 1 and 2 which may be calculated as

\frac{11L^{3}}{96E I}\frac{6\,E I}{L^{3}}=0.6875

Hence the influence vector i_2 is given as

{i}_{2}\,=\,\left\{\begin{array}{l}{{0.6875}}\\ {{\displaystyle 0.6875}}\end{array}\right\}

Once i_1 vector is known, i_3 vector is written as

{i}_{3}\,=\,\left\{\begin{array}{l}{{-0.093\,75}}\\ {{\displaystyle0.406\,25}}\end{array}\right\}

The equations of motion are

(m)\ddot{u}+ku = P_g \\ m\ddot{u} + ku = -m \left[\begin{matrix} i_1 & i_2 & i_3  \end{matrix} \right] \begin{pmatrix} \ddot{u}_{g1}   \\ \ddot{u}_{g_2}\\\ddot{u}_{g_3}  \end{pmatrix}

Related Answered Questions

Question: 18.11

Verified Answer:

The modal distribution of effective earthquake for...
Question: 18.3

Verified Answer:

                      [m]=m\left[\begin{arr...
Question: 18.5

Verified Answer:

                      f(t)=f_0 ~\sin \omega...