Holooly Plus Logo

Question 10.5: A vibration test table is set up to produce a constant PSD l......

A vibration test table is set up to produce a constant PSD level of 0.02 g²/Hz over the frequency range 10–1000 Hz. Find

(a) The RMS acceleration level of the table.

(b) The RMS displacement of the table, and the total movement if the displacement is Gaussian and limited to ± 3 times the RMS value.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let S_{\mathrm{g}} = acceleration PSD level in g²/Hz;
S_{\ddot{\mathrm{x}} } = acceleration PSD level in m/s²/Hz;
S_{\mathrm{x}} = displacement PSD level in m²/Hz;
\sigma _{\mathrm{g}} = RMS level in g units (1 g = 9.81 m/s²);
\sigma _{\mathrm{x}} = RMS level in meters.

Part (a):
From Eq. (10.30),

\sigma_{f_{1},f_{2}}^{2} = \int_{f_{1}}^{f_{2}}{S(f)df}                         (10.30) \\ \sigma_{\mathrm{g}}^{2} = \int_{f_{1}}^{f_{2}}{S_{\mathrm{g}}df}                                     (A)\\ S_{\mathrm{g}} = 0.02  \mathrm{g}^{2}/\mathrm{Hz}     \mathrm{for}     10<  f  <1000 \\ S_{\mathrm{g}} = 0          \mathrm{for}   f  <10       \mathrm{and}       f  >1000

From Eq. (A),

\sigma_{\mathrm{g}}^{2} = \int_{10}^{1000}{0.02  df = \left[0.02f\right]_{10}^{1000} } = 0.02 (1000 – 10) = 19.8   \mathrm{g}^{2}.

RMS acceleration of table = \sigma _{\mathrm{g}} = \sqrt{19.8} = 4.45   \mathrm{g}

Part (b):
In this case, since acceleration is to be converted to displacement, consistent units must be used, and the acceleration must be expressed in m/s². Since 1 g = 9.81 m/s²: S_{\ddot{\mathrm{x}} } = (9.81 ^{2} S_{\mathrm{g}}) = (9.81 ^{2} \times 0.02) = 1.925 m/s²/Hz , in the range 10–1000 Hz, and zero elsewhere. Then from Eq. (10.39b):

S_{\mathrm{x}}(f)= \frac{1}{(2\pi f)^{4}}  S_{\ddot{\mathrm{x}} }(f)                             (10.39b)\\ S_{\mathrm{x}}= \frac{1}{(2\pi f)^{4}}  S_{\ddot{\mathrm{x}} } = \frac{1.925}{(2\pi)^{4} } f^{-4} = (1.235 \times 10^{-3}) f^{-4}                         (B)

From Eq. (10.30) and Eq. (B),

\sigma_{\mathrm{x}}^{2} = \int_{f_{1}}^{f_{2}}{S_{\mathrm{x}} df} = (1.235 \times 10^{-3}) \int_{10}^{1000}{f^{-4}df} = (1.235 \times 10^{-3}) \left[-\frac{1}{4}f^{-3} \right] ^{1000}_{10} \\ =(0.3088 \times 10^{-6}) \mathrm{m²             and        } \sigma_{\mathrm{x}} = 0.556 \times 10^{-3}  m = 0.556  mm.

If the displacement has a Gaussian amplitude distribution limited to \pm 3 \sigma_{\mathrm{x}} the total movement is 6 × 0.556 mm = 3.34 mm.

Related Answered Questions

Question: 10.4

Verified Answer:

In Example 9.1, depending upon whether the square ...