A wheel 200 mm in diameter coasts to rest from a speed of 800 rpm in 600 s. Determine the angular acceleration.
Given \omega_{0}=800 \mathrm{rpm}=83.8 \mathrm{rad} / \mathrm{s} and \omega=0 at t=600 \mathrm{~s}, then
\alpha=\frac{\omega-\omega_{0}}{t}=\frac{-83.8 \mathrm{rad} / \mathrm{s}}{600 \mathrm{~s}}=\underline{-0.14 \mathrm{rad} / \mathrm{s}^{2}} \quad \text { (deceleration) }
The acceleration is negative. This means that the angular velocity is in one direction, while the angular acceleration is oppositely directed, thereby indicating a slowing down of the wheel.