Question 9.21: (a) Write down the quaternion for a rotation about the x-axi......

(a) Write down the quaternion for a rotation about the x-axis through an angle θ. (b) Obtain the corresponding direction cosine matrix.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) According to Eqn (9.146),

q =\sin \cfrac{\theta}{2}  \hat{ u } \quad q_4=\cos \cfrac{\theta}{2}                          (9.146)

{q =\sin (\theta / 2) \hat{ i } \quad q_4=\cos (\theta / 2)}                                 (a)

so that

\boxed{\{\widehat{q}\}=\left\{\begin{array}{c}\sin (\theta / 2) \\0 \\0 \\\cos (\theta / 2)\end{array}\right\}}                                (b)

(b) Substituting q_1=\sin (\theta / 2), q_2=q_3=0, \text { and } q_4=\cos (\theta / 2) into Eqn (9.148) yields

[ Q ]_{X \text{x}}=\left[\begin{array}{ccc}q_1{ }^2-q_2^2-q_3^2+q_4^2 & 2\left(q_1 q_2+q_3 q_4\right) & 2\left(q_1 q_3-q_2 q_4\right) \\2\left(q_1 q_2-q_3 q_4\right) & -q_1^2+q_2^2-q_3^2+q_4^2 & 2\left(q_2 q_3+q_1 q_4\right) \\2\left(q_1 q_3+q_2 q_4\right) & 2\left(q_2 q_3-q_1 q_4\right) & -q_1^2-q_2^2+q_3^2+q_4^2\end{array}\right]                                    (9.148)

 

[ Q ]=\left[\begin{array}{ccc}\sin ^2(\theta / 2)+\cos ^2(\theta / 2) & 0 & 0 \\0 & -\sin ^2(\theta / 2)+\cos ^2(\theta / 2) & 2 \sin (\theta / 2) \cos (\theta / 2) \\0 & -2 \sin (\theta / 2) \cos (\theta / 2) & -\sin ^2(\theta / 2)+\cos ^2(\theta / 2)\end{array}\right]                   (c)

From trigonometry, we recall that

\sin ^2 \cfrac{\theta}{2}+\cos ^2 \cfrac{\theta}{2}=1 \quad 2 \sin \cfrac{\theta}{2} \cos \cfrac{\theta}{2}=\sin \theta \quad \cos ^2 \cfrac{\theta}{2}-\sin ^2 \cfrac{\theta}{2}=\cos \theta

Therefore, Eqn (c) becomes

\boxed{[ Q ]=\left[\begin{array}{ccc}1 & 0 & 0 \\0 & \cos \theta & \sin \theta \\0 & -\sin \theta & \cos \theta\end{array}\right]}                          (d)

We recognize this as the direction cosine matrix \left[ R _1(\theta)\right] for a rotation θ around the x-axis.

Related Answered Questions

Question: 9.12

Verified Answer:

Since the comoving frame is rigidly attached to th...
Question: 9.10

Verified Answer:

From Example 9.5, \left[ I _A\right]=\left[...