Holooly Plus Logo

Question 13.11: Air flows through the 100-mm-diameter pipe in Fig. 13–23 hav......

Air flows through the 100-mm-diameter pipe in Fig. 13–23 having an absolute pressure of p_1 = 90 kPa. Determine the diameter d at the end of the nozzle so that isentropic flow occurs out of the nozzle at M_2 = 0.7. The air within the pipe is taken from a large reservoir at standard atmospheric pressure and temperature.

fig 13-23
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Fluid Description.   We assume steady isentropic flow through the nozzle.
Analysis.   The diameter d can be determined from continuity of the mass flow, which requires
\dot{m}  =  \rho_1 V_1 A_1  =  \rho_2 V_2 A_2                                     (1)
We must first find M_1 and then find the densities and velocities at 1 and 2.
The stagnation values for atmospheric air are determined from Appendix A [ table A.1 , table A.2 , table A.3 , table A.4 , table A.5 ] as p_0 = 101.3 kPa,T_0 = 15°C, and \rho_0 = 1.23 kg /m³.
Knowing p_1 and p_0, we can now determine M_1 at the entrance 1 of the nozzle using Eq. 13–27.

p_0  =  p_1 (1  +  \frac{k  –  1}{2} M_1^2) ^{k/(k – 1)} 101.3  kPa  =  (90  kPa) (1  +  (\frac{1.4  –  1}{2}) M_1^2)^{1.4/(1.4 – 1)}

M_1 = 0.4146
As expected, M_1 < M_2 = 0.7.
Applying Eq. 13–26 to find the temperatures at the entrance and exit, we have

T_0  =  T_1 (1  +  \frac{k  –  1}{2} M_1^2) (273  +  15) K  =  T_1(1  +  (\frac{1.4  –  1}{2})(0.4146)^2]

T_1 = 278.43 K

 

T_0  =  T_2 (1  +  \frac{k  –  1}{2} M_2^2) (273  +  15) K  =  T_2(1  +  (\frac{1.4  –  1}{2})(0.7)^2]

T_2 = 262.30  K

Thus, the velocities at the entrance and exit are
V_1  =  M_1\sqrt{kRT_1}  =  (0.4146)\sqrt {1.4 (286.9  J/kg · K) (278.4  K)}= 138.63 m/s

V_2  =  M_2\sqrt{kRT_2}  =  (0.7)\sqrt{1.4 (286.9  J/kg · K) (262.3  K)}  =  227.21  m/s
The density of the air at the entrance and exit of the nozzle is determined using Eq. 13–28. \rho _0  =  \rho(1  +  \frac{k  –  1}{2} M_1^2)^{1/(k-1)}

\rho _0  =  \rho_1 (1  +  \frac{k  –  1}{2} M_1^2)                                1.23  kg/m^3  =  \rho_1 [1  +  \frac{1.4  –  1}{2} (0.4146)^2]^{1/(1.4 – 1)}

 

\rho_1  =  1.1304  kg/m^3

 

\rho _0  =  \rho_2 (1  +  \frac{k  –  1}{2} M_2^2)                                1.23  kg/m^3  =  \rho_2 [1  +  \frac{1.4  –  1}{2} (0.7)^2]^{1/(1.4 – 1)}

 

\rho_2  =  0.9736  kg/m^3

 

Finally, applying Eq. 1,
\rho_1 V_1 A_1  = \rho_2 V_2 A_2
(1.1304  kg/m^3) (138.63  m/s) [\pi (0.05  m)^2]  =  (0.9736  kg/m^3) (227.21 m/s) \pi (\frac{d}{2})^2
d = 84.2 mm

SOLUTION II
We can also solve this problem in a direct manner using Table B–1, even though subsonic flow occurs at the end of the nozzle. To do so, we will make reference to a phantom extension of the nozzle, where M = 1 and A = A*, and then relate the area ratios A_1 for M_1 = 0.4146 and A_2 for M_2 = 0.7 to this reference.

\frac{A_2}{A_1}  =  \frac{A_2/A^*}{A_1/A^*}

Thus,

A_2  =  A_1 (\frac{A_2/A^*}{A_1/A^*})

Using Table B–1, we therefore have

\frac{1}{4} \pi d^2  =  \pi (0.05)^2  (\frac{1.0944}{1.5451})

d = 84.2 mm

Related Answered Questions