Question 4.12: An earth satellite has the following orbital parameters: rp ......

An earth satellite has the following orbital parameters:

\begin{array}{ll}r_{ p }=6700  km & \text { Perigee } \\r_{ a }=10  000  km & \text { Apogee } \\\theta_0=230^{\circ} & \text { True anomaly } \\\Omega_0=270^{\circ} & \text { Right ascension of the ascending node } \\i_0=60^{\circ} & \text { Inclination } \\\omega_0=45^{\circ} & \text { Argument of perigee }\end{array}

Calculate the right ascension (longitude east of x^{\prime}) and declination (latitude) relative to the rotating earth 45 min later.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

First, we compute the semimajor axis a, eccentricity e, the angular momentum h, the semimajor axis a, and the period T. For the semimajor axis, we recall that

a=\cfrac{r_{ p }+r_{ a }}{2}=\cfrac{6700+10,000}{2}=8350  km

From Eqn (2.84) we get

e=\cfrac{r_{ a }-r_{ p }}{r_{ a }+r_{ p }}=\cfrac{10,000-6700}{10,000+6700}=0.19760

Equation (2.50) yields

r_p=\cfrac{h^2}{\mu}  \cfrac{1}{1+e}                   (2.50)

h=\sqrt{\mu r_{ p }(1+e)}=\sqrt{398,600 \times 6700 \times(1+0.19760)}=56,554  km ^2 / s

Finally, we obtain the period from Eqn (2.83),

T=\cfrac{2 \pi}{\sqrt{\mu}} a^{3 / 2}=\cfrac{2 \pi}{\sqrt{398,600}} 8350^{3 / 2}=7593.5  s

Now we can proceed with Algorithm 4.6.
Step 1:

\begin{aligned}& \dot{\Omega}=-\left[\frac{3}{2} \frac{\sqrt{\mu} J_2 R_{\text {earth }}^2}{\left(1-e^2\right) a^{7 / 2}}\right] \cos i=-\left[\frac{3}{2} \frac{\sqrt{398,600} \times 0.0010836 \times 6378^2}{\left(1-0.19760^2\right) 8350^{7 / 2}}\right] \cos 60^{\circ}=-2.3394 \times 10^{-7} {}^{\circ} / s \\\\& \dot{\omega}=\dot{\Omega} \frac{5 / 2 \sin ^2 i-2}{\cos i}=-2.3394 \times 10^{-5}\left(\frac{5 / 2 \sin ^2 60^{\circ}-2}{\cos 60^{\circ}}\right)=5.8484 \times 10^{-6}  {}^{\circ} / s\end{aligned}

Step 2:
a.

E=2 \tan ^{-1}\left(\tan \cfrac{\theta}{2} \sqrt{\cfrac{1-e}{1+e}}\right)=2 \tan ^{-1}\left(\tan \cfrac{230^{\circ}}{2} \sqrt{\cfrac{1-0.19760}{1+0.19760}}\right)=-2.1059  rad

b.

M=E-e \sin E=-2.1059-0.19760 \sin (-2.1059)=-1.9360  rad

c.

t_0=\cfrac{M}{2 \pi} T=\cfrac{-1.9360}{2 \pi} \cdot 7593.5=-2339.7 s \quad(2339.7 s \text { until perigee })

Step 3: t=t_0+45  \text{min} =-2339.7+45 \times 60=360.33  s \quad(360.33  s \text { after perigee })

a.

\begin{aligned}M & =2 \pi \cfrac{t}{T}=2 \pi \cfrac{360.33}{7593.5}=0.29815  \text{rad} \\\\E-0.19760 \sin E & =0.29815 \overbrace{\Rightarrow}^{\text {Algorithm 3.1 }} E=0.36952  rad \\\\\theta & =2 \tan ^{-1}\left(\tan \cfrac{E}{2} \sqrt{\cfrac{1+e}{1-e}}\right)=2 \tan ^{-1}\left(\tan \cfrac{0.36952}{2} \sqrt{\cfrac{1+0.19760}{1-0.19760}}\right)=25.723^{\circ}\end{aligned}

b.

\begin{aligned}& \Omega=\Omega_0+\dot{\Omega} \Delta t=270^{\circ}+\left(-2.3394 \times 10^{-5 \%} / s \right)(2700  s )=269.94 \\& \omega=\omega_0+\dot{\omega} \Delta t=45^{\circ}+\left(5.8484 \times 10^{-6} / s \right)(2700  s )=45.016^{\circ}\end{aligned}

c.

\{ r \}_X \stackrel{\text { Algorithm } 4.5}{\widehat{=}}\left\{\begin{array}{c}3212.6 \\-2250.5 \\5568.6\end{array}\right\}( km )

d.

\begin{aligned}&\theta=\omega_E \Delta t=\frac{360^{\circ}\left(1+\frac{1}{365.26}\right)}{24 \times 3600 s } \times 2700 s =11.281^{\circ}\\\\&\begin{aligned}& {\left[ R _3(\theta)\right]=\left[\begin{array}{ccc}\cos 11.281^{\circ} & \sin 11.281^{\circ} & 0 \\-\sin 11.281^{\circ} & \cos 11.281^{\circ} & 0 \\0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0.98068 & 0.19562 & 0 \\-0.19562 & 0.98068 & 0 \\0 & 0 & 1\end{array}\right]} \\\\& \{ r \}_{X^{\prime}}=\left[ R _3(\theta)\right]\{ r \}_X=\left[\begin{array}{ccc}0.98068 & 0.19562 & 0 \\-0.19562 & 0.98068 & 0 \\0 & 0 & 1\end{array}\right]\left\{\begin{array}{c}3212.6 \\-2250.5 \\5568.6\end{array}\right\}=\left\{\begin{array}{c}2710.3 \\-2835.4 \\5568.6\end{array}\right\}( km )\end{aligned}\end{aligned}

e.

r =2710.3 I ^{\prime}-2835.4 \hat{\jmath}^{\prime}+5568.6 \hat{ K }^{\prime}\overbrace{\Rightarrow }^{\text{Algorithm 4:1}} \boxed{\alpha=313.7^{\circ} \quad \delta=54.84^{\circ}}

Related Answered Questions