An electron is confined to a narrow evacuated tube of length 3.0 m; the tube functions as a one-dimensional infinite potential well. (a) What is the energy difference between the electron’s ground state and its first excited state? (b) At what quantum number n would the energy difference between adjacent energy levels be 1.0 eV—which is measurable, unlike the result of (a)? At that quantum number, (c) what multiple of the electron’s rest energy would give the electron’s total energy and (d) would the electron be relativistic?
We can use the mc² value for an electron from Table 37-3 (511 × 10³ eV) and hc = 1240 eV · nm by writing Eq. 39-4 as
E_n=\left(\frac{h^2}{8 m L^2}\right) n^2, \quad \text { for } n=1,2,3, \ldots (39-4)
E_n=\frac{n^2 h^2}{8 m L^2}=\frac{n^2 ( h c )^2}{8( m c^2 ) L^2} .
(a) With L=3.0 \times 10^9 nm, the energy difference is
E_2-E_1=\frac{1240^2}{8 ( 511 \times 10^3 )( 3.0 \times 10^9 )^2} ( 2^2-1^2 ) =1.3 \times 10^{-19} eV \text {. }
(b) Since (n + 1)² – n² = 2n + 1, we have
\Delta E=E_{n+1}-E_n=\frac{h^2}{8 m L^2} ( 2 n+1 ) =\frac{ ( h c ) ^2}{8 (m c^2 ) L^2} ( 2 n+1 ) .
Setting this equal to 1.0 eV, we solve for n:
n=\frac{4\left(m c^2\right) L^2 \Delta E}{(h c)^2}-\frac{1}{2}=\frac{4\left(511 \times 10^3\, eV \right)\left(3.0 \times 10^9\, nm \right)^2(1.0\, eV )}{(1240 \,eV \cdot nm )^2}-\frac{1}{2} \approx 1.2 \times 10^{19} .
(c) At this value of n, the energy is
E_n=\frac{1240^2}{8 ( 511 \times 10^3 )( 3.0 \times 10^9 ) ^2} ( 6 \times 10^{18})^2 \approx 6 \times 10^{18} \,eV .
Thus,
\frac{E_n}{m c^2}=\frac{6 \times 10^{18} eV }{511 \times 10^3 eV }=1.2 \times 10^{13} .
(d) Since E_n / m c^2 \gg 1 , the energy is indeed in the relativistic range.
Table 37-3 The Energy Equivalents of a Few Objects | |||
Object | Mass (kg) | Energy Equivalent | |
Electron | \approx 9.11 \times 10^{-31} | \approx 8.19 \times 10^{-14}\, J | (\approx 511 \,keV ) |
Proton | \approx 1.67 \times 10^{-27} | \approx 1.50 \times 10^{-10}\, J | (\approx 938\, MeV ) |
Uranium atom | \approx 3.95 \times 10^{-25} | \approx 3.55 \times 10^{-8}\, J | (\approx 225 \,GeV ) |
Dust particle | \approx 1 \times 10^{-13} | \approx 1 \times 10^4\, J | (\approx 2 \,kcal ) |
U.S. penny | \approx 3.1 \times 10^{-3} | \approx 2.8 \times 10^{14}\, J | (\approx 78 \,GW \cdot h ) |