An inclined venturimeter is used to measure the flow of water in a pipe of diameter 15 cm. A differential mercury manometer is connected to the inlet and throat. The maximum range available in differential mercury manometer is 30 cm of mercury deflection. Find the maximum throat diameter which will induce full gauge deflection when the flow rate is 0.026 m3/s. Coefficient of discharge for the venturimeter is 0.98.
Given data:
Diameter at inlet D_1=15 \mathrm{~cm}=0.15 \mathrm{~m}
Cross-sectional area of pipe is
A_1=\frac{\pi}{4} D_1^2=\frac{\pi}{4} \times(0.15)^2=0.01767 \mathrm{~m}^2
Volume flow rate is given as Q=30 \mathrm{lit} / \mathrm{s}=30 \times 10^{-3} \mathrm{~m}^3 / \mathrm{s}
Coefficient of discharge C_d=0.98
Differential manometer reading Δh = 30 cm = 0.30 m
Let the diameter at throat and cross-sectional area at throat be D_2 \text{and} A_2, respectively.
The discharge through the venturimeter is given by Eq. (6.23) as
Q=\frac{C_d A_1 A_2 \sqrt{2 g\left(\frac{\rho_m}{\rho_w}-1\right) \cdot \Delta h}}{\sqrt{A_1^2-A_2^2}}
Substituting the values, we have
0.026=\frac{0.98 \times 0.01767 \times A_2 \times \sqrt{2 \times 9.81 \times\left(\frac{13.6}{1}-1\right) \times 0.3}}{\sqrt{(0.01767)^2-A_2^2}}
or \sqrt{(0.01767)^2-A_2^2}=5.7357 A_2
or (0.01767)^2-A_2^2=32.8983 A_2^2
or 33.8983 A_2^2=0.000312
or A_2^2=\frac{0.000312}{33.8983}=9.204 \times 10^{-6}
or A_2=\sqrt{9.204 \times 10^{-6}}=3.0338 \times 10^{-3} \mathrm{~m}^2
or \frac{\pi}{4} D_2^2=3.0338 \times 10^{-3}
or D_2^2=\frac{4 \times 3.0338 \times 10^{-3}}{\pi}
or D_2=\sqrt{\frac{4 \times 3.0338 \times 10^{-3}}{\pi}}=0.062 \mathrm{~m}=6.2 \mathrm{~cm}