An inductor having a resistance of 4 Ω and an inductance of 20 mH are connected across a 230 V, 50 Hz supply. What value of capacitance should be connected in parallel to the inductor to produce a resonance condition? What will be the value of the resonant current?
For resonance, the current drawn by the capacitor in parallel must be equal to I_L \sin \phi_L .
\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{L}} \sin \phi_{\mathrm{L}}=30.9 \times \sin 57.5^{\circ}=30.9 \times 0.843=26 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{C}}} \text { or, } \mathrm{X}_{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{C}}}=\frac{230}{26}=8.84 \Omega \\ & \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{314 \mathrm{C}}=8.84 \Omega \end{aligned}or, \mathrm{C}=\frac{1}{314 \times 8.84} \mathrm{~F}=\frac{10^6}{314 \times 8.84} \mu \mathrm{F}
= 360.2 \mu \mathrm{F}
Resonant current for parallel resonance is the minimum current which is the in-phase component, i.e., \mathrm{I}_{\mathrm{L}} \cos \phi_{\mathrm{L}} .
\begin{aligned} \mathrm{I}_0 & =\mathrm{I}_{\mathrm{L}} \cos \phi_{\mathrm{L}}=30.9 \times \cos 57.5^{\circ}=30.9 \times 0.537 \\ & =16.6 \mathrm{~A} \end{aligned}The phasor diagram representing the resonant condition has been shown in Fig. 3.72