Question 6.4: An oil of density 850 kg/m³ is flowing through a pipe having......

An oil of density 850 kg/m³ is flowing through a pipe having diameter 30 cm and 15 cm at the bottom and upper end, respectively. The intensity of pressure at the bottom end is 200 kN/m2 and at the upper end is 98 kN/m2. If the rate of flow through pipe is 50 lit/s, find the difference in datum head. Neglect friction.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let 1 and 2 designate the bottom and top end of the pipeline respectively.
Given data:

Density of oil                                                          ρ= 850 kg/m³
Diameter of pipe at section 1                                  D1=30 cm=0.3 m D_1=30 \mathrm{~cm}=0.3 \mathrm{~m}

Diameter of pipe at section 2                                  D2=15 cm=0.15 m D_2=15 \mathrm{~cm}=0.15 \mathrm{~m}

Pressure at section 1                                                    p1=200kN/m2=200×103 N/m2 p_1=200 \mathrm{kN} / \mathrm{m}^2=200 \times 10^3 \mathrm{~N} / \mathrm{m}^2

Pressure at section 2                                                  p2=98kN/m2=98×103 N/m2 p_2=98 \mathrm{kN} / \mathrm{m}^2=98 \times 10^3 \mathrm{~N} / \mathrm{m}^2

Rate of flow                                                                      Q=50 litres /s=50×103 m3/s=0.05 m3/s Q=50 \text { litres } / \mathrm{s}=50 \times 10^{-3} \mathrm{~m}^3 / \mathrm{s}=0.05 \mathrm{~m}^3 / \mathrm{s}

Cross-sectional area at section 1 is          A1=π4D12=π4(0.3)2=0.0707 m2 A_1=\frac{\pi}{4} D_1^2=\frac{\pi}{4}(0.3)^2=0.0707 \mathrm{~m}^2

Cross-sectional area at section 2 is            A2=π4D22=π4(0.15)2=0.0177 m2 A_2=\frac{\pi}{4} D_2^2=\frac{\pi}{4}(0.15)^2=0.0177 \mathrm{~m}^2

Average velocity at section 1 is                V1=QA1=0.05 m3/s0.0707 m2=0.707 m/s V_1=\frac{Q}{A_1}=\frac{0.05 \mathrm{~m}^3 / \mathrm{s}}{0.0707 \mathrm{~m}^2}=0.707 \mathrm{~m} / \mathrm{s}

Average velocity at section 2 is              V2=QA2=0.05 m3/s0.0177 m2=2.825 m/s V_2=\frac{Q}{A_2}=\frac{0.05 \mathrm{~m}^3 / \mathrm{s}}{0.0177 \mathrm{~m}^2}=2.825 \mathrm{~m} / \mathrm{s}

Applying Bernoulli’s equation between sections 1 and 2 along a streamline, one can write

p1ρg+V122g+z1=p2ρg+V222g+z2 \frac{p_1}{\rho g}+\frac{V_1^2}{2 g}+z_1=\frac{p_2}{\rho g}+\frac{V_2^2}{2 g}+z_2

or                              z2z1=p1p2ρg+V12V222g z_2-z_1=\frac{p_1-p_2}{\rho g}+\frac{V_1^2-V_2^2}{2 g}

or                              z2z1=200×10398×103850×9.81+0.70722.82522×9.81 z_2-z_1=\frac{200 \times 10^3-98 \times 10^3}{850 \times 9.81}+\frac{0.707^2-2.825^2}{2 \times 9.81}

=12.232 — 0.381=11.851m of oil

Related Answered Questions