Question 6.43: An open cylinder of 20 cm diameter and 30 cm height is fille......

An open cylinder of 20 cm diameter and 30 cm height is filled with water up to the top. It is fixed on a table at its centre which can be rotated by a motor. Determine the speed of rotation of table so that one-third of the area of the bottom of the cylinder gets exposed.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:
Diameter of cylinder            D = 20 cm = 0.2 m
Radius of cylinder                 R = 0.1 m
Height of cylinder                 H = 30 cm = 0.3 m

Let x be the radius of the exposed portion of the bottom of the tank (Fig. 6.28). Let us also consider that the height of the imaginary parabola DOE is z.

Now,                        \pi x^2=\frac{\pi R^2}{3}

or                                \frac{x^2}{R^2}=\frac{1}{3}=0.333

Using the relation z=\frac{\omega^2 r^2}{2 g} , for the imaginary parabola

DOE, we have

z=\frac{\omega^2 x^2}{2 g}                     (6.59)

Using the relation z=\frac{\omega^2 r^2}{2 g} , for the parabola AOB, we have

z + 0.3 = \frac{\omega^2 R^2}{2 g}     (6.6o)

From Eqs. (6.59) and (6.60), we have

\frac{z}{z+0.3}=\frac{x^2}{R^2}=0.333

or                          z = 0.333z + 0.099

or                          z=\frac{0.099}{0.667}=0.1484 \mathrm{~m}

Using the relation z=\frac{\omega^2 r^2}{2 g} ,for the parabola AOB, we have

0.1484+0.3=\frac{\omega^2 \times 0.1^2}{2 \times 9.81}

or                          ω² = 879.76

or                          \omega=\sqrt{879.76}=29.66 \mathrm{rad} / \mathrm{s}

Rotational speed is given by

N=\frac{60 \omega}{2 \pi}                     \left[\because \omega=\frac{2 \pi N}{60}\right]

=\frac{60 \times 29.64}{2 \pi}=283.04 \mathrm{rpm}

7777777777

Related Answered Questions