Question 3.33: An R–L–C series circuit has R = 10 Ω, L = 0.1 H, and C = 8 μ......

An R–L–C series circuit has R = 10 Ω, L = 0.1 H, and C = 8 μf. Calculate the following:

(a) resonant frequency;
(b) Q-factor of the circuit at resonance;
(c) half-power frequencies and bandwidth.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) We know that the condition for the series resonance is

X_L=X_C

i.e.,               2 \pi \mathrm{f}_0 \mathrm{~L}=\frac{1}{2 \pi \mathrm{f}_0 \mathrm{C}}

or,                    f_0=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}

Substituting values

\begin{aligned} \mathrm{f}_0 & =\frac{1}{2 \pi \sqrt{0.1 \times 8 \times 10^{-6}}}=178 \mathrm{~Hz} \\(b)\quad \mathrm{Q} \text {-factor } & =\frac{\text { voltage across } \mathrm{L}}{\text { supply voltage }}=\frac{\mathrm{I}_0 \mathrm{X}_{\mathrm{L}}}{\mathrm{I}_0 \mathrm{R}}=\frac{2 \pi \mathrm{f}_0 \mathrm{~L}}{\mathrm{R}} \\ & =\frac{2 \pi \mathrm{L}}{\mathrm{R}} \cdot \frac{1}{2 \pi \sqrt{\mathrm{LC}}}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \end{aligned}

Substituting values

\mathrm{Q} \text {-factor }=\frac{1}{10} \sqrt{\frac{0.1}{8 \times 10^{-6}}}=11.2

(c) Half-power frequencies are the frequencies corresponding to current which is 0.707 of the resonant current. They are f_1\ and\ f_2 , i.e., the lower, and upper frequencies forming the bandwidth.

f_1=f_0-\frac{R}{4 \pi L}

and                    \mathrm{f}_2=\mathrm{f}_0+\frac{\mathrm{R}}{4 \pi \mathrm{L}}.

\begin{aligned}\text{Substituting}\quad & \mathrm{f}_1=178-\frac{10}{12.56 \times 0.1}=169 \mathrm{~Hz} \\ & \mathrm{f}_2=178+\frac{10}{12.56 \times 0.1}=187 \mathrm{~Hz} \end{aligned}

Bandwidth             =\mathrm{f}_2-\mathrm{f}_1=18 \mathrm{~Hz}

Related Answered Questions

Question: 3.43

Verified Answer:

We know that at resonance the impedance of the cir...