Question 3.25: An RLC series circuit is excited by a dc source of 100 V. Fi......

An RLC series circuit is excited by a dc source of 100 V. Find an expression for current and voltage in the elements of the circuit. Take R = 60 Ω, L = 0.2 H and C = 50 µ F. Also draw the initial and final state of the circuits.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The time domain RLC circuit is shown in Fig. 1. Let the switch be closed at t = 0 and i (t) be the current through the circuit.

Here, \mathcal{L}\{i( t )\}= I ( s ) \quad \text { and } \quad \mathcal{L} \{100\}=\frac{100}{ s }

The s-domain RLC circuit is shown in Fig. 2. With reference to Fig. 2, we can write,

I(s)=\frac{\frac{100}{s}}{60+0.2 s+\frac{1}{50 \times 10^{-6} s}} \\ \begin{aligned} =\frac{100}{60 s+0.2 s^2+\frac{1}{50 \times 10^{-6}}}=\frac{100}{0.2\left(s^2+\frac{60}{0.2} s+\frac{1}{0.2 \times 50 \times 10^{-6}}\right)} \\ =\frac{500}{s^2+300 s+10^5} \end{aligned}

Let us examine the roots of the denominator polynomial of I(s).
The roots of quadratic s² + 300s + 10^5 = 0 are,

\begin{aligned}S& =\frac{-300 \pm \sqrt{300^2-4 \times 10^5}}{2}=\frac{-300 \pm \sqrt{-310000}}{2} \\ =\frac{-300 \pm \sqrt{-1} \sqrt{310000}}{2}=-150 \pm j 278.3882 \end{aligned}

Since the roots are complex conjugate the current i(t) will be damped sinusoid. Let us rearrange the terms of denominator polynomial of I(s) as shown below:

\begin{aligned} I(s)= \frac{500}{\left(s^2+2 \times 150 s+150^2\right)+10^5-150^2}=\frac{500}{(s+150)^2+77500} \\=\frac{500}{(s+150)^2+(\sqrt{77500})^2}=\frac{500}{(s+150)^2+278.4^2} \\ =\frac{500}{278.4} \times \frac{278.4}{(s+150)^2+278.4^2}=1.796 \times \frac{278.4}{(s+150)^2+278.4^2} \end{aligned}

Add and subtract 150²

(a+b)^2=a^2+2 a b+b^2

Let us take the inverse Laplace transform of I (s).

\mathcal{L} ^{-1}\{ I ( s )\}= \mathcal{L} ^{-1}\left\{1.796 \times \frac{278.4}{( s +150)^2+278.4^2}\right\} \mathcal{L}\left\{e^{-a t} \sin \omega t\right\}=\frac{\omega}{(s+a)^2+\omega^2}

 

\therefore i( t )=1.796 e ^{-150 t } \sin 278.4 t A   …(1)

With reference to Fig. 1, by Ohm’s law, we can write,

\begin{aligned}v_{ R }( t ) & = R \times i( t ) \\ & =60 \times 1.796 e ^{-150 t } \sin 278.4 t \\ & =107.76 e ^{-150 t } \sin 278.4 t V \end{aligned}    ….(2)

We know that if  i(t) is the current through inductance then voltage across the inductance is given by,

Using equation (1)

d(uv) = u dv − v du

\begin{aligned}v_{ L }( t ) & = L \frac{ d }{ dt } i( t ) \\& =0.2 \frac{ d }{ dt }\left[1.796 e ^{-150 t } \sin 278.4 t \right] \\& =0.2 \times 1.796\left[ e ^{-150 t } \cos 278.4 t \times 278.4+ e ^{-150 t } \times\right (−150) \sin 278.4t ] \\& =100 e ^{-150 t } \cos 278.4 t -53.88 e ^{-150 t } \sin 278.4 t   ….. (3) \\ & = e ^{-150 t }[\cos 278.4 t \times 100-\sin 278.4 t \times 53.88]….. (4) \end{aligned}

Let us construct a right-angled triangle with 100 and 53.88 as two sides as shown in Fig. 3. With reference to Fig. 3, we can write,

\tan \phi=\frac{53.88}{100}=0.5388 \\ \therefore \phi=\tan ^{-1} 0.5388=28.3^{\circ} \\ Also, \sin \phi=\frac{53.88}{113.592} \Rightarrow 53.88=113.592 \sin \phi \\ \therefore 53.88=113.592 \sin 28.3^{\circ} …..(5)   \\ \cos \phi=\frac{100}{113.592} \Rightarrow 100=113.592 \cos \phi \\ \therefore 100=113.592 \cos 28.3^{\circ}  …..(6)

Using equations (5) and (6), equation (4) can be written as,

v_L(t) = e^{−150t} [\cos  278.4 t × 113.592 \cos  28.3° − \sin  278.4 t × 113.592 \sin  28.3° ]

 

= e ^{−150t} 113.592 [\cos  278.4 t \cos  28.3° − \sin  278.4 t \sin  28.3° ]

 

= 113.592 e −150t \cos  (278.4 t + 28.3° )

 

= 113.592 e ^{−150t} \sin  (278.4 t + 28.3° + 90° )

 

= 113.592 e^ {−150t} \sin  (278.4 t + 118.3° ) V

 

\cos (A+B)=\cos A \cos B-\sin A \sin B

 

\cos \theta=\sin \left(\theta+90^{\circ}\right)

With reference to Fig. 1, by KVL, we get,

v_{ R }( t )+v_{ L }( t )+v_{ C }( t )=100

\therefore v_C(t) =100-v_R(t)-v_L(t) \\ =100-107.76 e^{-150 t} \sin 278.4 t-100 e^{-150 t} \cos 278.4 t+ 53.88 e ^{-150 t } \sin 278.4 t \\ =100-53.88 e^{-150 t} \sin 278.4 t-100 e^{-150 t} \cos 278.4 t \\ =100-e^{-150 t}[\sin 278.4 t \times 53.88+\cos 278.4 t \times 100]                  …..(7)

Let us construct a right-angled triangle with 53.88 and 100 as two sides as shown in Fig. 4. With reference to Fig. 4, we get,

\begin{aligned} & \tan \phi=\frac{100}{53.88}=1.856 \\ & \therefore \phi=\tan ^{-1} 1.856=61.7^{\circ} \end{aligned} \\ \text { Also, } \quad \cos \phi=\frac{53.88}{113.592} \Rightarrow 53.88=113.592 \times \cos \phi\\ \therefore \quad 53.88=113.592 \cos 61.7^{\circ} …(8) \\ \sin \phi=\frac{100}{113.592} \Rightarrow 100=113.592 \sin \phi \\ \therefore 100=113.592 \sin 61.7^{\circ}       …(9)

Using equations (8) and (9), equation (7) can be written as,

\begin{aligned}v_{ C }( t ) & =100- e ^{-150 t }\left[\sin 278.4 t \times 113.592 \cos 61.7^{\circ}+\cos 278.4 t \times 113.592 \sin 61.7^{\circ}\right] \\ & =100-113.592 e ^{-150 t }\left[\sin 278.4 t \cos 61.7^{\circ}+\cos 278.4 t \sin 61.7^{\circ}\right] \\ & =100-113.592 e ^{-150 t } \sin \left(278.4 t +617^{\circ}\right) \end{aligned} \sin (A+B)=\sin A \cos B+\cos A \sin B

In summary

\begin{aligned} i( t ) & =1.796 e ^{-150 t } \sin 278.4 t A \\ v_{ R }( t ) & =107.76 e ^{-150 t } \sin 278.4 t \ V \\ v_{ L }( t ) & =113.592 e ^{-150 t } \sin \left(278.4 t +118.3^{\circ}\right) \ V \\ v_{ C }( t ) & =100-113.592 e ^{-150 t } \sin \left(278.4 t +61.7^{\circ}\right) \ V \end{aligned}

Initial state circuit

At t =0^{+}, i( t )=i\left(0^{+}\right)=1.796 \times e ^0 \times \sin 0=0\\ At t =0^{+}, v_{ R }( t )=v_{ R }\left(0^{+}\right)=107.76 \times e ^0 \times \sin 0=0\\ At \ t =0^{+}, v_{ L }( t )=v_{ L }\left(0^{+}\right)=113.592 \times e ^0 \times \sin 118.3^{\circ}=100.0152 V \approx 100 V \\ At \ t =0^{+}, v_{ C }( t )=v_{ C }\left(0^{+}\right)=100-113.592 \times e ^0 \times \sin 61.7^{\circ}\\ =100-100.0152 \approx 0

From the above analysis we can say that at t = 0^+ , the inductance behaves as an open circuit and the capacitance behaves as a short circuit. Final state circuit.

Final state circuit

At t =\infty, i( t )=i(\infty)=1.796 \times e ^{-\infty} \times \sin (\infty)=0\\ At t =\infty, v_{ R }( t )=v_{ R }(\infty)=107.76 \times e ^{-\infty} \times \sin (\infty)=0\\ At t =\infty, v_{ L }( t )=v_{ L }(\infty)=113.592 \times e ^{-\infty} \times \sin (\infty)=0\\ At t =\infty, v_{ C }( t )=v_{ C }(\infty)=100-113.592 \times e ^{-\infty} \times \sin (\infty)=100-0=100 \ V

From the above analysis we can say that at t = ∞, i.e., at steady state, the inductance behaves as a short circuit and the capacitance behaves as an open circuit.

1
2
3
4
5.6

Related Answered Questions