Question 13.4: Analysis of a Roller Chain Drive A three-strand ANSI No. 60,......

Analysis of a Roller Chain Drive

A three-strand ANSI No. 60, ¾ in. pitch roller chain transmits power from a N_1 -tooth driver sprocket operating at n_1 rpm. Determine:

a. The design power capacity.

b. The tension in the chain.

c. The factor of safety n of the chain on the basis of ultimate strength.

Given: N_1 =19, p =¾ in., n_1 =1000 rpm

Assumptions: The input power type is an internal combustion (IC) engine, mechanical drive. The type of driven load is moderate shock. With the exception of the tensile force, all forces are taken to be negligible.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

See Tables 13.7 through 13.10.

a. For driver sprocket H_r =20.6 hp, type B lubrication is required (Table 13.8). Service factor K_1 =1.4 (Table 13.9). From Table 13.10 for three strands, K_2 =2.5. Applying Equation (13.26), we have

H_d=H_r K_1 K_2           (13.26)

H_d=20.6(1.4)(2.5)=72.1  hp

b. The average chain velocity, by Equation (13.24), is

V=\frac{N p n}{12}         (13.24)

V_1=\frac{19(0.75)(1000)}{12}=1187.5  fpm

Equation (13.25) results in

F_1=\frac{33,000  hp }{V}=\frac{396,000  hp }{p N n}      (13.25)

F_1=\frac{33,000(72.1)}{1187.5}=2.0  kips

c. The ultimate strength, for a single-strand chain, is 7.03 kips (Table 13.7). The allowable load for a three-strand chain is then F_{all} = 7.03(3) = 21.09 kips. Hence, the factor of safety is

n=\frac{F_{\text {all }}}{F_1}=\frac{21.09}{2.0}=10.5

Comment: The analysis is based on 15 kh of chain life, since other estimates are not available.

TABLE 13.7
Sizes and Strengths of Standard Roller Chains
Roller
Chain No. Pitch, p (in.) Diameter, d (in.) Width, b (in.) Pin Diameter, d_p (in.) Link Plate Thickness, t (in.) Minimum Ultimate Strength (lb)
25 \frac{1}{4} 0.130 \frac{1}{8} 0.0905 0.030 780
35 \frac{3}{8} 0.200 \frac{3}{16} 0.141 0.050 1760
41 \frac{1}{2} 0.306 \frac{1}{4} 0.141 0.050 1500
40 \frac{1}{2} \frac{5}{16} \frac{5}{16} 0.156 0.060 3125
50 \frac{5}{8} 0.4 \frac{3}{8} 0.200 0.080 4480
60 \frac{3}{4} \frac{15}{32} \frac{1}{2} 0.234 0.094 7030
80 1 \frac{5}{8} \frac{5}{8} 0.312 0.125 12.500
100 1 \frac{1}{4} \frac{3}{4} \frac{3}{4} 0.375 0.156 19.530
120 1 \frac{1}{2} \frac{7}{8} 1 0.437 0.187 28.125
140 1 \frac{3}{4} 1 1 0.500 0.219 38.280
160 2 1 \frac{1}{8} 1 \frac{1}{4} 0.562 0.250 50.000
180 2 \frac{1}{4} 1 \frac{13}{32} 1 \frac{13}{32} 0.687 0.2811 63.280
200 2 \frac{1}{2} 2 \frac{9}{16} 1 \frac{1}{2} 0.781 0.312 78.125
240 3 1 \frac{7}{8} 1 \frac{7}{8} 0.937 0.375 112.500
Source: ANSI/ASME Standard B29.1M-1993.

 

TABLE 13.9
Service Factors ( K_1 ) for Single-Strand Roller Chains
Type of Input Power
Type of Driven Load IC Engine Hydraulic Drive Electric Motor or Turbine IC Engine Mechanical Drive
Smooth 1.0 1.0 1.2
Moderate shock 1.2 1.3 1.4
Heavy shock 1.4 1.5 1.7
Source: ANSI/ASME Standard B29.1M-1993.

 

TABLE 13.10
Multiple-Strand Factors (K_2) for Roller Chains
Number of Strands Multiple-Strand Factor
2 1.7
3 2.5
4 3.3
Source: ANSI/ASME Standard B29.1M-1993.
T13.8

Related Answered Questions