Holooly Plus Logo

Question 2.3.3: As an example of using Laplace transforms to solve a homogen......

As an example of using Laplace transforms to solve a homogeneous differential equation, consider the undamped single-degree-of-freedom system described by

\ddot{x}(t)+\omega_n^2 x(t)=0, \quad x(0)=x_0, \quad \dot{x}(0)=v_0

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Taking the Laplace transform of \ddot{x}+\omega_n^2 x=0 for these nonzero initial conditions results in

s^2 X(s)-s x_0-v_0+\omega_n^2 X(s)=0

by direct application of the definition given in Appendix B and the linear nature of the Laplace transform. Algebraically solving this last expression for X(s) yields

X(s)=\frac{x_0+s v_0}{s^2+\omega_n^2}

Using L^{-1}[X(s)]=x(t) and entries (6) and (5) of Table B.1 yields that the solution is

x(t)=x_0 \cos \omega_n t+\frac{v_0}{\omega_n} \sin \omega_n t

This is, of course, in total agreement with the solution obtained in Chapter 1 .

Table B.1 Partial List of Functions and Their Laplace Transforms with Zero Initial Conditions and t > 0
F(s) f(t)
(1) 1 \delta\left(t_0\right) \text { unit impulse at } t_0
(2) \frac1s 1, unit step
(3) \frac{1}{s+a}\left(\frac{1}{s-a}\right) e^{-a t} \quad\left(e^{a t}\right)
(4) \frac{1}{(s+a)(s+b)} \frac{1}{b-a}\left(e^{-a t}-e^{-b t}\right)
(5) \frac{\omega}{s^2+\omega^2} \sin \omega t
(6) \frac{s}{s^2+\omega^2} \cos \omega t
(7) \frac{1}{s\left(s^2+\omega^2\right)} \frac{1}{\omega^2}(1-\cos \omega t)
(8) \frac{1}{s^2+2 \zeta \omega s+\omega^2} \frac{1}{\omega_d} e^{-\zeta \omega t} \sin \omega_d t, \zeta<1, \omega_d=\omega \sqrt{1-\zeta^2}
(9) \frac{\omega^2}{s\left(s^2+2 \zeta \omega s+\omega^2\right)} 1-\frac{\omega}{\omega_d} e^{-\zeta \omega t} \sin \left(\omega_d t+\phi\right), \phi=\cos ^{-1} \zeta, \zeta<1
(10) \frac{1}{s^n} \frac{t^{n-1}}{(n-1) !}, n=1,2 \ldots
(11) \frac{n !}{(s-\omega)^{n+1}} t^n e^{\omega t}, n=1,2 \ldots
(12) \frac{1}{s(s+\omega)} \frac{1}{\omega}\left(1-e^{-\omega t}\right)
(13) \frac{1}{s^2(s+\omega)} \frac{1}{\omega^2}\left(e^{-\omega t}+\omega t-1\right)
(14) \frac{\omega}{s^2-\omega^2} \sinh \omega t
(15) \frac{1}{s^2\left(s^2+\omega^2\right)} \cosh \omega t
(16) \frac{1}{s^2\left(s^2+\omega^2\right)} \frac{1}{\omega^3}(\omega t-\sin \omega t)
(17) \frac{1}{\left(s^2+\omega^2\right)^2} \frac{1}{2 \omega^3}(\sin \omega t-\omega t \cos \omega t)
(18) \frac{s}{\left(s^2+\omega^2\right)^2} \frac{t}{2 \omega} \sin \omega t
(19) \frac{s^2-\omega^2}{\left(s^2+\omega^2\right)^2} t \cos \omega t

Related Answered Questions