Question 6.SP.2: Assume that rc is large enough so that ic ≈ αie for the CB a......

Assume that r_c is large enough so that i_c ≈ αi_e for the CB amplifier of Fig. 3-23, whose small-signal circuit is given by Fig. 6-9.    Find an expression for the current-gain ratio A_i = i_L/i_s and evaluate it if r_e = 30  Ω,  r_b = 300  Ω,  r_c = 1  MΩ,  R_E = 5  kΩ,  R_C = R_L = 4  kΩ, and α = 0.99.

6.9
3.23
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Letting i_c ≈ αi_e in (6.27) allows us to determine the input resistance R_{in}:
v_{e b} = (r_{e} + r_{b})i_{e}  –  r_{b}i_{c}                    (6.27)
v_{e b} = (r_{e} + r_{b})i_{e}  –  r_{b}(αi_e)

from which                   R_{\mathrm{in}} = {\frac{v_{e b}}{i_{e}}} = r_{e} + (1  –  \alpha)r_{b}

By current division at node E,
i_{e} = {\frac{R_{E}}{R_{E}  +  R_{\mathrm{in}}}}~i_{s}

Solving for i_{s} gives
i_{s} = {\frac{R_{E}  +  R_{\mathrm{in}}}{R_{E}}}\,\,i_{e} = {\frac{R_{E}  +  r_{e}  +  (1  –  \alpha)r_{b}}{R_{E}}}\,\,i_{e}                    (1)

Current division at node C, again with i_c ≈ αi_e, yields
i_{L} = {\frac{R_{C}}{R_{C}  +  R_{L}}}\ i_{c} = {\frac{R_{C}\alpha i_{e}}{R_{C}  +  R_{L}}}                        (2)

The current gain is now the ratio of (2) to (1):
A_{i} = {\frac{i_{L}}{i_{s}}} = {\frac{\alpha R_{C}/(R_{C}  +  R_{L})}{[R_{E}  +  r_{e}  +  (1  –  \alpha)r_{b}]/R_{E}}} = {\frac{\alpha R_{C}R_{E}}{(R_{C}  +  R_{L})[R_{E}  +  r_{e}  +  (1  –  \alpha)r_{b}]}}

Substituting the given values results in
A_{i} = \frac{(0.99)(4  \times  10^{3})(5  \times  10^{3})}{(4  \times  10^{3}  +   4  \times  10^{3})[5  \times  10^{3}  +  30  +  (1  –  0.99)(300)]} = 0.492

Related Answered Questions