At an ionic strength of 0.100 mol \mathrm{d}\mathrm{m}^{-3} and a temperature of 25 °C, the observed rate constant for the reaction
\mathrm{CH}_{2}\mathrm{BrCOO}^{-}({\mathrm{aq}})+\mathrm{S}_{2}\mathrm{O}_{3}^{2-}({\mathrm{aq}})\to\mathrm{CH}_{2}\mathrm{S}_{2}\mathrm{O}_{3}\mathrm{COO}^{2-}({\mathrm{aq}})+\mathrm{Br}^{-}({\mathrm{aq}})
is 1.07\times10^{-2}\,\mathrm{mol}^{-1}\,\mathrm{d}\mathrm{m}^{3}\,\mathrm{s}^{-1}, while that for a reaction of the type
\mathrm{Ptdien}X^{+}(\mathrm{aq})+Y^{-}(\mathrm{aq})\longrightarrow\mathrm{Ptdien}Y^{+}(\mathrm{aq})+X^{-}(\mathrm{aq})
{\mathrm{is~}}3.6\times10^{-3}\mathrm{~mol}^{-1}\ {\mathrm{dm}}^{3}\ s^{-1}. Comment on these values.
Estimate the values of the rate constants for zero ionic strength, and comment on the relative values and compare with the values at I=0.100\mathrm{~mol~dm}^{-3}.
{{z}}_{\mathrm{A}}{{z}}_{\mathrm{B}}=(-1)\times(-2)=2
\log_{10}k=\log_{10}k_{0}+2\times2\times0.510{\frac{\sqrt{0.100}}{1+{\sqrt{0.100}}}}
\mathrm{log}_{10}~k_{0}=\mathrm{log}_{10}(1.07\times10^{-2}\,\mathrm{mol}^{-1}\,\mathrm{dm}^{3}\,\mathrm{s}^{-1})-0.490=-2.461
k_{0}=3.5\times10^{-3}\,\mathrm{mol}^{-1}\,\mathrm{d}\mathrm{m}^{3}\,\mathrm{s}^{-1}
z_{\mathrm{A}}z_{\mathrm{B}}=1\times(-1)=-1
\log_{10}k=\log_{10}k_{0}+2\times(-1)\times0.510{\frac{\sqrt{0.100}}{1+{\sqrt{0.100}}}}
\log_{10}k_{0}=\log_{10}(3.6\times10^{-3}\,\mathrm{{mol}}^{-1}\,\mathrm{{dm}}^{3}\,\mathrm{{s}}^{-1})+0.245=-2.199
k_{0}=6.3\times10^{-3}\,\mathrm{mol}^{-1}\,\mathrm{d}\mathrm{m}^{3}\,\mathrm{s}^{-1}.