Question 12.8: At elevated temperatures, nitrogen dioxide decomposes to nit......

At elevated temperatures, nitrogen dioxide decomposes to nitric oxide and molecular oxygen:

2  NO_{2}  (g) \longrightarrow 2  NO  (g)  +  O_{2}  (g)

Concentration–time data for consumption of at 300°C are as follows:

(a) Is the reaction first order or second order?

(b) What is the value of the rate constant?

(c) What is the concentration of  NO_{2}  at t = 20.0 min?

(d) What is the half-life of the reaction when the initial concentration of  NO_{2}  \text{is}  6.00 \times  10^{-3}  M ?

(e) What is  t_{1/2}  \text{when}  [NO_{2}]_{0}  \text{is}  3.00 \times  10^{-3}  M  ?

STRATEGY

To determine whether the reaction is first order or second order, calculate values of  \ln  [NO_{2}] and 1 / [NO_{2}], and then graph these values versus time. The rate constant can be obtained from the slope of the straight-line plot, and concentrations and half-lives can be calculated from the appropriate equation in Table 12.4.

Time (s) [NO_{2}] Time (s) [NO_{2}]
0 8.00 \times 10^{-3} 200 4.29 \times 10^{-3}
50 6.58 \times 10^{-3} 300 3.48 \times 10^{-3}
100 5.59 \times 10^{-3} 400 2.93 \times 10^{-3}
150 4.85 \times 10^{-3} 500 2.53 \times 10^{-3}

TABLE 12.4 Characteristics of First- and Second-Order Reactions of the Type  A \longrightarrow  \text{Products}

First-Order Second-Order
Rate law -\frac{\Delta [A]}{\Delta t} = k [A] -\frac{\Delta [A]}{\Delta t} = k [A]^{2}
Concentration–time equation \ln  [A]_{t} = -kt  +  \ln  [A]_{0} \frac{1}{[A]_{t}} = kt  +  \frac{1}{[A]_{0}}
Linear graph \ln  [A]  \text{versus}  t \frac{1}{[A]}  \text{versus}  t
Graphical determination of k k = -(Slope) k = (Slope)
Half-life t_{1/2} = \frac{0.693}{k} t_{1/2} = \frac{1}{k[A]_{0}}
(constant) (not constant)
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The plot of  \ln  [NO_{2}]  versus time is curved, but the plot of  1 / [NO_{2}]  versus time is a straight line. The reaction is therefore second order in  NO_{2}

(b) The rate constant equals the slope of the straight line in the plot of  1/[NO_{2}]  versus time, which we can estimate from the coordinates of two widely separated points on the line:

k = \text{Slope} = \frac{\Delta y}{\Delta x} = \frac{3.4  M^{-1}  –  150  M^{-1}}{400  s  –  50  s} = \frac{190  M^{-1}}{350  s} = 0.54 / (M  •  s)

(c) The concentration of  NO_{2}  at t = 20.0 min (1.20 × 10³ s) can be calculated using the integrated rate law:

\frac{1}{[NO_{2}]_{t}} = kt  +  \frac{1}{[NO_{2}]_{0}}

Substituting the values of k, t, and  [NO_{2}]_{0}  gives

\frac{1}{[NO_{2}]_{t}} = (\frac{0.54}{M  •  s}) (1.20 \times 10^{3}  s)  +  \frac{1}{8.00 \times 10^{-3}  M} \\ \quad\quad = \frac{648}{M}  +  \frac{125}{M} = \frac{773}{M} \\ [NO_{2}]_{t} = 1.3 \times 10^{-3}  M

(d) The half-life of a second–order reaction can be calculated from the rate constant and the initial concentration of  NO_{2} (6.00 \times 10^{-3}  M)  :

t_{1/2} = \frac{1}{k [NO_{2}]_{0}} = \frac{1}{(\frac{0.54}{M  •  s})  (6.00 \times 10^{-3}  M)} = 3.1 \times 10^{2}  s

(e) When  [NO_{2}]_{0}  \text{is}  3.00 × 10^{-3}  M  ,  t_{1/2} = 6.2 \times 10^{2}  s  (twice as long as when  [NO_{2}]_{0}  is because is now smaller by a factor of 2).

Related Answered Questions

Question: 12.4

Verified Answer:

\text{Rate} = - \frac{\Delta [N_{2}O_{5}]}{...