Begin by finding mid-month declination and sunrise hour angle for July 16 (n = 197):
\begin{matrix} \delta & = \ 23.45 \ \sin \ \left[\frac{360}{365} \ \left(n \ − \ 81\right)\right] \ = \ 23.45 \ \sin \ \left[\frac{360}{365} \ \left(197 \ − \ 81\right)\right] & \\ & = \ 21.35º \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ \ \ & \left(7.6\right) \end{matrix}
\begin{matrix} H_{SR} & = \ \cos^{−1} \left(−\tan \ L \ \tan \ \delta\right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad & \left(7.17\right) \\ & = \ \cos^{−1} \left(−\tan \ 37.73º \ \tan \ 21.35º\right) \ = \ 107.6º \ = \ 1.878 \ \text{radians} & \end{matrix}
Using a solar constant of 1.37 kW/m², the E.T. horizontal insolation from (7.43) is
\begin{matrix} \bar{I}_{0} & = \ \left(\frac{24}{\pi}\right) \ SC \ \left[1 \ + \ 0.034 \ \cos \ \left(\frac{360n}{365}\right)\right] \ \left(\cos \ L \ \cos \ \delta \ \sin \ H_{SR} \ + \ H_{SR} \ \sin \ L \ \sin \ \delta\right) \\ & = \ \left(\frac{24}{\pi}\right) 1.37 \ \left[1 \ + \ 0.034 \ \cos \ \left(\frac{360 \ \cdot \ 197}{365}\right)º\right] \ ( \cos \ 37.73 \ \cos \ 21.35º \ \sin \ 107.6º \quad \quad \quad \ \\ & \ + \ 1.878 \ \sin \ 37.73º \ \sin \ 21.35º ) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ & = \ 11.34 \ {kWh}/{m^{2}}\text{-day} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \end{matrix}
From (7.42), the clearness index is
K_{T} \ = \ \frac{\bar{I}_{H}}{\bar{I}_{0}} \ = \ \frac{7.32 \ {kWh}/{m^{2}} \ \cdot \ \text{day}}{11.34 \ {kWh}/{m^{2}} \ \cdot \ \text{day}} \ = \ 0.645
From (7.44) the fraction diffuse is
\begin{matrix} \frac{\bar{I}_{DH}}{\bar{I}_{H}} & = \ 1.390 \ − \ 4.027K_{T} \ + \ 5.531 {K_{T}}^{2} \ − \ 3.108 {K_{T}}^{3} \ \ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ & = \ 1.390 \ − \ 4.027 \ \left(0.645\right) \ + \ 5.531 \ \left(0.645\right)^{2} \ − \ 3.108\ \left(0.645\right)^{3} \ = \ 0.258 \end{matrix}
So, the diffuse horizontal radiation is
\bar{I}_{DH} \ = \ 0.258 \ \cdot \ 7.32 \ = \ 1.89 \ {kWh}/{m^{2}} \text{-day}
The diffuse radiation on the collector is given by (7.45)
\bar{I}_{DC} \ = \ \bar{I}_{DH} \ \left(\frac{1 \ + \ \cos \ \Sigma}{2}\right) \ = \ 1.89 \ \left(\frac{1 \ + \ \cos \ 30º}{2}\right) \ = \ 1.76 \ {kWh}/{m^{2}} \text{-day}
The reflected radiation on the collector is given by (7.46)
\bar{I}_{RC} \ = \ \rho \ \bar{I}_{H} \ \left(\frac{1 \ – \ \cos \ \Sigma}{2}\right) \ = \ 0.2 \ \cdot \ 7.32 \ \left(\frac{1 \ – \ \cos \ 30º}{2}\right) \ = \ 0.10 \ {kWh}/{m^{2}} \text{-day}
From (7.41), the beam radiation on the horizontal surface is
\bar{I}_{BH} \ = \ \bar{I}_{H} \ – \ \bar{I}_{DH} \ = \ 7.32 \ − \ 1.89 \ = \ 5.43 \ {kWh}/{m^{2}} \text{-day}
To adjust this for the collector tilt, first find the sunrise hour angle on the collector from (7.49)
\begin{matrix} H_{SRC} & = \ \text{min} \left\{\cos^{-1} \left(- \ \tan \ L \ \tan \ \delta\right), \ \cos^{-1} \left[- \ \tan \left(L \ – \ \Sigma\right) \ \tan \ \delta\right] \right\} \quad \quad \quad \quad \quad \quad \quad \quad \ \ \\ & = \ \text{min} \left\{\cos^{-1} \left(- \ \tan \ 37.73º \ \tan \ 21.35º\right), \ \cos^{-1} \left[- \ \tan \left(37.73 \ – \ 30\right)º \ \tan \ 21.35º\right] \right\} \\ & = \ \text{min}\left\{107.6º, \ 93.0º\right\} \ = \ 93.0º \ = \ 1.624 \ \text{radians} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \ \end{matrix}
The beam tilt factor (7.48) is thus
\begin{matrix} \bar{R}_{B} & = \ \frac{\cos\left(L \ – \ \Sigma\right) \ \cos \ \delta \ \sin \ H_{SRC} \ + \ H_{SRC} \ \sin\left(L \ – \ \Sigma\right) \ \sin \ \delta}{\cos L \ \cos \ \delta \ \sin \ H_{SR} \ + \ H_{SR} \ \sin L \ \sin \ \delta} \quad \quad \quad \quad \quad \\ & = \ \frac{\cos\left(37.73 \ – \ 30\right)º \ \cos \ 21.35º \ \sin \ 93º \ + \ 1.624 \ \sin\left(37.73 \ – \ 30\right)º \ \sin \ 21.35º}{\cos \ 37.73º \ \cos \ 21.35º \ \sin \ 107.6º \ + \ 1.878 \ \sin \ 37.73º \ \sin \ 21.35º} \\ & = \ 0.893 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \end{matrix}
So the beam insolation on the collector is
\bar{I}_{BC} \ = \ \bar{I}_{BH} \bar{R}_{B} \ = \ 5.43 \ \cdot \ 0.893 \ = \ 4.85 \ {kWh}/{m^{2}} \text{-day}
Total insolation on the collector is thus
\bar{I}_{C} \ = \ \bar{I}_{BC} \ + \ \bar{I}_{DC} \ + \ \bar{I}_{RC} \ = \ 4.85 \ + \ 1.76 \ + \ 0.10 \ = \ 6.7 \ {kWh}/{m^{2}} \text{-day}