Question 6.9: Average Power in the Wind. Using the data given in Fig. 6.22......

Average Power in the Wind. Using the data given in Fig. 6.22, find the average windspeed and the average power in the wind (W/m²). Assume the standard air density of 1.225 kg/m³. Compare the result with that which would be obtained if the average power were miscalculated using just the average windspeed.

Fig. 6.22
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We need to set up a spreadsheet to determine average wind speed v and the average value of v³. Let’s do a sample calculation of one line of a spreadsheet using the 805 h/yr at 8 m/s:

\begin{matrix} \ \text{Fraction of annual hours at} \ 8 \ {m}/{s} & = \ \frac{805 \ {h}/{yr}}{24 \ {h}/{d} \ \times \ 365 \ {d}/{yr}} = \ 0.0919 \ \ \ \ \\ \ \quad v_{8} \ \cdot \ \text{Fraction of hours at} \ 8 \ {m}/{s} & = \ 8 \ {m}/{s} \ \times \ 0.0919 \ = \ 0.735 \\ \left(v_{8}\right)^{3} \ \cdot \ \text{Fraction of hours at} \ 8 \ {m}/{s} & = \ 8^{3} \ \times \ 0.0919 \ = \ 47.05 \quad \ \ \ \end{matrix}

The rest of the spreadsheet to determine average wind power using (6.29) is as follows:

P_{avg} \ = \ \left(\frac{1}{2}\rho A v^{3}\right)_{avg} \ = \ \frac{1}{2}\rho A \left(v^{3}\right)_{avg} (6.29)

The average windspeed is

v_{avg} \ = \ \sum\limits_{i}{\left[v_{i} \ \cdot \ \left(\text{Fraction of hours} \ @ \ v_{i}\right) \right] } \ = \ 7.0 \ {m}/{s}

The average value of v³ is

\left(v^{3}\right)_{avg} \ = \ \sum\limits_{i}{\left[{v_{i}}^{3} \ \cdot \ \left(\text{Fraction of hours} \ @ \ v_{i}\right) \right] } \ = \ 653.24

The average power in the wind is

P_{avg} \ = \ \frac{1}{2} \rho \left(v^{3}\right)_{avg} \ = \ 0.5 \ \times \ 1.225 \ \times \ 653.24 \ = \ 400 \ {W}/{m^{2}}

If we had miscalculated average power in the wind using the 7 m/s average windspeed, we would have found:

P_{average} \left(\text{WRONG}\right) \ = \ \frac{1}{2} \rho \left({v_{avg}}\right)^{3} \ = \ 0.5 \ \times \ 1.225 \ \times \ 7.0^3 \ = \ 210 \ {W}/{m^{2}}
Wind
Speed
v_{i} (m/s)
Hours @ v_{i}
per year
Fraction of
Hours @ v_{i}
v_{i} × Fraction
Hours @ v_{i}
(v_{i} (v_{i})³ × fraction
Hours @ v_{i}
0 24 0.0027 0.000 0 0.00
1 276 0.0315 0.032 1 0.03
2 527 0.0602 0.120 8 0.48
3 729 0.0832 0.250 27 2.25
4 869 0.0992 0.397 64 6.35
5 941 0.1074 0.537 125 13.43
6 946 0.1080 0.648 216 23.33
7 896 0.1023 0.716 343 35.08
8 805 0.0919 0.735 512 47.05
9 690 0.0788 0.709 729 57.42
10 565 0.0645 0.645 1,000 64.50
11 444 0.0507 0.558 1,331 67.46
12 335 0.0382 0.459 1,728 66.08
13 243 0.0277 0.361 2,197 60.94
14 170 0.0194 0.272 2,744 53.25
15 114 0.0130 0.195 3,375 43.92
16 74 0.0084 0.135 4,096 34.60
17 46 0.0053 0.089 4,913 25.80
18 28 0.0032 0.058 5,832 18.64
19 16 0.0018 0.035 6,859 12.53
20 9 0.0010 0.021 8,000 8.22
21 5 0.0006 0.012 9,261 5.29
22 3 0.0003 0.008 10,648 3.65
23 1 0.0001 0.003 12,167 1.39
24 1 0.0001 0.003 13,824 1.58
25 0 0.0000 0.000 15,625 0.00
Totals: 8760 1000 7.0 653.24

Related Answered Questions

Question: 6.16

Verified Answer:

CF \ = \ \frac{\text{Actual energy delivere...