Question 9.PS.72: Calculate the air temperature and pressure at the stagnation......

Calculate the air temperature and pressure at the stagnation point right in front of a meteorite entering the atmosphere (-50 °C, 50 kPa) with a velocity of 2000 m/s. Do this assuming air is incompressible at the given state and repeat for air being a compressible substance going through an adiabatic compression.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Kinetic energy:    \frac{1}{2} \mathbf{V} ^2=\frac{1}{2}(2000)^2 / 1000=2000 \,kJ / kg

Ideal gas:    v _{ atm }= RT / P =0.287 \times 223 / 50=1.28 \,m ^3 / kg

a) incompressible
Energy Eq.6.13:      \Delta h =\frac{1}{2} \mathbf{V} ^2=2000 \,kJ / kg

If A.5 \Delta T =\Delta h / C _{ p }=1992 \,K  unreasonable, too high for that  C _{ p }

Use A.7:

\begin{aligned}& h _{ st }= h _{ o }+\frac{1}{2} \mathbf{V} ^2=223.22+2000=2223.3 \,kJ / kg \\& T _{ st }=1977 \,K\end{aligned}

Bernoulli (incompressible) Eq.9.17:

\begin{aligned}& \Delta P = P _{ st }- P _{ o }=\frac{1}{2} \mathbf{V} ^2 / v =2000 / 1.28=1562.5 \,kPa \\& P _{ st }=1562.5+50=1612.5 \,kPa\end{aligned}

b) compressible

T _{ st }=1977 \,K    the same energy equation.

From A.7.2: Stagnation point  P_{r \,s t}=1580.3 ; \text { Free } P_{r\, o}=0.39809

\begin{aligned}P_{ st } & =P_{ o } \times \frac{ P _{ r\,st }}{ P _{ r\,o }}=50 \times \frac{1580.3}{0.39809} \\& =198485 \,k P a\end{aligned}

Notice that this is highly compressible, v is not constant.

129

Related Answered Questions