Calculate the mass of a sample of (initially pure) ^{40}K that has an initial decay rate of 1.70 × 10^5 disintegrations/s. The isotope has a half-life of 1.28 × 10^9 y.
Combining Eqs. 42-20 and 42-21, we obtain
R=\frac{N_{40} \ln 2}{T_{1 / 2}} (42-20)
N_{40}=\left(1.17 \times 10^{-4}\right) \frac{M_{ sam } N_{ A }}{M} (42-21)
M_{\mathrm{sam}}=N \frac{M_{\mathrm{K}}}{M_{\mathrm{A}}}=\left(\frac{R T_{1 / 2}}{\ln 2}\right)\left(\frac{40 \mathrm{~g} / \mathrm{mol}}{6.02 \times 10^{23} / \mathrm{mol}}\right)
which gives 0.66 g for the mass of the sample once we plug in 1.7 \times 10^5 / s for the decay rate and 1.28 \times 10^9 y=4.04 \times 10^{16} s for the half-life.