Question 9.11: Calculate the principal moments of inertia about the center ......

Calculate the principal moments of inertia about the center of mass and the corresponding principal directions for the bent rod in Figure 9.16. Its mass is uniformly distributed at 2 kg/m.

9.16
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The mass of each of the rod segments is

m_1=2 \cdot 0.4=0.8  kg \quad m_2=2 \cdot 0.5=1  kg \quad m_3=2 \cdot 0.3=0.6  kg \quad m_4=2 \cdot 0.2=0.4  kg                  (a)

The total mass of the system is

m=\sum\limits_{i=1}^4 m_i=2.8  kg                           (b)

The coordinates of each segment’s center of mass are

\begin{array}{lll}x_{G_1}=0 & y_{G_1}=0 & z_{G_1}=0.2  m \\x_{G_2}=0 & y_{G_2}=0.25 m & z_{G_2}=0.2  m \\x_{G_3}=0.15  m & y_{G_3}=0.5 m & z_{G_3}=0 \\x_{G_4}=0.3  m & y_{G_4}=0.4 m & z_{G_4}=0\end{array}                        (c)

If the slender rod in Figure 9.15 is aligned with, say, the x-axis, then a=\ell \text { and } b=c=0, so that according to Eqn (9.63),

\left[ I _G\right]=\left[\begin{array}{ccc}\frac{1}{12} m\left(b^2+c^2\right) & -\frac{1}{12} m a b & -\frac{1}{12} m a c \\-\frac{1}{12} m a b & \frac{1}{12} m\left(a^2+c^2\right) & -\frac{1}{12} m b c \\-\frac{1}{12} m a c & -\frac{1}{12} m b c & \frac{1}{12}m\left(a^2+b^2\right)\end{array}\right]        (9.63)

\left[ I _G\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\0 & \frac{1}{12} m \ell^2 & 0 \\0 & 0 & \frac{1}{12} m \ell^2\end{array}\right]

That is, the moment of inertia of a slender rod about the axes normal to the rod at its center of mass is \frac{1}{12} m \ell^2, where m and \ell are the mass and length of the rod, respectively. Since the mass of a slender bar is assumed to be concentrated along the axis of the bar (its cross-sectional dimensions are infinitesimal), the moment of inertia about the centerline is zero. By symmetry, the products of inertia about the axes through the center of mass are all zero. Using this information and the parallel axis theorem, we find the moments and products of inertia of each rod segment about the origin O of the xyz system as follows:
Rod 1:

\begin{array}{ll}\left.I_x^{(1)}=I_{G_1}^{(1)}\right)_x+m_1\left(y_{G_1}^2+z_{G_1}^2\right) & =\left(\frac{1}{12} \cdot 0.8 \cdot 0.4^2\right)+\left[0.8\left(0+0.2^2\right)\right]=0.04267  kg – m ^2 \\\left.I_y^{(1)}=I_{G_1}^{(1)}\right)_y+m_1\left(x_{G_1}^2+z_{G_1}^2\right) & =\left(\frac{1}{12} \cdot 0.8 \cdot 0.4^2\right)+\left[0.8\left(0+0.2^2\right)\right]=0.04267  kg – m ^2 \\\left.I_z^{(1)}=I_{G_1}^{(1)}\right)_z+m_1\left(x_{G_1}^2+y_{G_1}^2\right) & =0+[0.8(0+0)]=0 \\\left.I_{x y}^{(1)}=I_{G_1}^{(1)}\right)_{x y}-m_1 x_{G_1} y_{G_1} & =0-[0.8(0)(0)]=0 \\\left.I_{x z}^{(1)}=I_{G_1}^{(1)}\right)_{x z}-m_1 x_{G_1} z_{G_1} & =0-[0.8(0)(0.2)]=0 \\\left.I_{y z}^{(1)}=I_{G_1}^{(1)}\right)_{y z}-m_1 y_{G_1} z_{G_1} & =0-[0.8(0)(0)]=0\end{array}

Rod 2:

\begin{array}{ll}\left.I_x^{(2)}=I_{G_2}^{(2)}\right)_x+m_2\left(y_{G_2}^2+z_{G_2}^2\right) & =\left(\frac{1}{12} \cdot 1.0 \cdot 0.5^2\right)+\left[1.0\left(0+0.25^2\right)\right]=0.08333  kg – m ^2 \\\left.I_y^{(2)}=I_{G_2}^{(2)}\right)_y+m_2\left(x_{G_2}^2+z_{G_2}^2\right) & =0+[1.0(0+0)]=0 \\\left.I_z^{(2)}=I_{G_2}^{(2)}\right)_z+m_2\left(x_{G_2}^2+y_{G_2}^2\right) & =\left(\frac{1}{12} \cdot 1.0 \cdot 0.5^2\right)+\left[1.0\left(0+0.5^2\right)\right]=0.08333  kg – m ^2 \\\left.I_{x y}^{(2)}=I_{G z}^{(2)}\right)_{x y}-m_2 x_{G_2} y_{G_2} & =0-[1.0(0)(0.5)]=0 \\\left.I_{x z}^{(2)}=I_{G_2}^{(2)}\right)_{x z}-m_2 x_{G_2} z_{G_2} & =0-[1.0(0)(0)]=0 \\\left.I_{y z}^{(2)}=I_{G_2}^{(2)}\right)_{y z}-m_2 y_{G_2} z_{G_2} & =0-[1.0(0.5)(0)]=0\end{array}

Rod 3:

\begin{array}{ll}\left.I_x^{(3)}=I_{G_3}^{(3)}\right)_x+m_3\left(y_{G_3}^2+z_{G_3}^2\right) & =0+\left[0.6\left(0.5^2+0\right)\right]=0.15  kg – m ^2 \\\left.I_y^{(3)}=I_{G_3}^{(3)}\right)_y+m_3\left(x_{G_3}^2+z_{G_3}^2\right) & =\left(\frac{1}{12} \cdot 0.6 \cdot 0.3^2\right)+\left[0.6\left(0.15^2+0\right)\right]=0.018  kg – m ^2 \\\left.I_z^{(3)}=I_{G_3}^{(3)}\right)_z+m_3\left(x_{G_3}^2+y_{G_3}^2\right) & =\left(\frac{1}{12} \cdot 0.6 \cdot 0.3^2\right)+\left[0.6\left(0.15^2+0.5^2\right)\right]=0.1680  kg – m ^2 \\\left.I_{x y}^{(3)}=I_{G_3}^{(3)}\right)_{x y}-m_3 x_{G_3} y_{G_3} & =0-[0.6(0.15)(0.5)]=-0.045  kg – m ^2 \\\left.I_{x z}^{(3)}=I_{G_3}^{(3)}\right)_{x z}-m_3 x_{G_3} z_{G_3} & =0-[0.6(0.15)(0)]=0 \\\left.I_{y z}^{(3)}=I_{G_3}^{(3)}\right)_{y z}-m_3 y_{G_3} z_{G_3} & =0-[0.6(0.5)(0)]=0\end{array}

Rod 4:

\begin{array}{ll}\left.I_x^{(4)}=I_{G_4}^{(4)}\right)_x+m_4\left(y_{G_4}^2+z_{G_4}^2\right) & =\left(\frac{1}{12} \cdot 0.4 \cdot 0.2^2\right)+\left[0.4\left(0.4^2+0\right)\right]=0.06533  kg – m ^2 \\\left.I_y^{(4)}=I_{G_4}^{(4)}\right)_y+m_4\left(x_{G_4}^2+z_{G_4}^2\right) & =0+\left[0.4\left(0.3^2+0\right)\right]=0.0360  kg – m ^2 \\\left.I_z^{(4)}=I_{G_4}^{(4)}\right)_z+m_4\left(x_{G_4}^2+y_{G_4}^2\right) & =\left(\frac{1}{12} \cdot 0.4 \cdot 0.2^2\right)+\left[0.4\left(0.3^2+0.4^2\right)\right]=0.1013  kg – m ^2 \\\left.I_{x y}^{(4)}=I_{G_4}^{(4)}\right)_{x y}-m_4 x_{G_4} y_{G_4} & =0-[0.4(0.3)(0.4)]=-0.0480  kg – m ^2 \\\left.I_{x z}^{(4)}=I_{G_4}^{(4)}\right)_{x z}-m_4 x_{G_4} z_{G_4} & =0-[0.4(0.3)(0)]=0 \\\left.I_{y z}^{(4)}=I_{G_4}^{(4)}\right)_{y z}-m_4 y_{G_4} z_{G_4} & =0-[0.4(0.4)(0)]=0\end{array}

The total moments of inertia for all the four rods about O are

\begin{array}{lll}I_x=\sum\limits_{i=1}^4 I_x^{(i)}=0.3413  kg – m ^2 & I_y=\sum\limits\limits_{i=1}^4 I_y^{(i)}=0.09667  kg – m ^2 & I_z=\sum\limits_{i=1}^4 I_z^{(i)}=0.3527  kg – m ^2 \\\\I_{x y}=\sum\limits_{i=1}^4 I_{x y}^{(i)}=-0.0930  kg – m ^2 & I_{x z}=\sum\limits_{i=1}^4 I_{x z}^{(i)}=0 & I_{y z}=\sum\limits_{i=1}^4 I_{y z}^{(i)}=0\end{array}                               (d)

The coordinates of the center of mass of the system of four rods are, from Eqns (a)-(c),

\begin{aligned}& x_G=\cfrac{1}{m} \sum\limits_{i=1}^4 m_i x_{G_i}=\cfrac{1}{2.8} \cdot 0.21=0.075  m \\& y_G=\cfrac{1}{m} \sum\limits_{i=1}^4 m_i y_{G_i}=\cfrac{1}{2.8} \cdot 0.71=0.2536  m \\& z_G=\cfrac{1}{m} \sum\limits_{i=1}^4 m_i z_{G_i}=\cfrac{1}{2.8} \cdot 0.16=0.05714  m\end{aligned}                            (e)

We use the parallel axis theorems to shift the moments of inertia in Eqn (d) to the center of mass G of the system.

\begin{array}{ll}I_{G_x}=I_x-m\left(y_G^2+z_G^2\right) & =0.3413-0.1892=0.1522  kg – m ^2 \\\\I_{G_y}=I_y-m\left(x_G^2+z_G^2\right) & =0.09667-0.02489=0.07177  kg – m ^2 \\\\I_{G_z}=I_z-m\left(x_G^2+y_G^2\right) & =0.3527-0.1958=0.1569  kg – m ^2 \\\\I_{G_{x y}}=I_{x y}+m x_G y_G & =-0.093+0.05325=-0.03975  kg – m ^2 \\\\I_{G_{x z}}=I_{x z}+m x_G z_G & =0+0.012=0.012  kg – m ^2 \\\\I_{G_{y z}}=I_{y z}+m y_G z_G & =0+0.04057=0.04057  kg – m ^2\end{array}

Therefore, the inertia tensor, relative to the center of mass, is

[ I ]=\left[\begin{array}{ccc}I_{G_x} & I_{G_{x y}} & I_{G_{x z}} \\I_{G_{x y}} & I_{G_y} & I_{G_{y z}} \\I_{G_{x z}} & I_{G_{y z}} & I_{G_z}\end{array}\right]=\left[\begin{array}{ccc}0.1522 & -0.03975 & 0.012 \\-0.03975 & 0.07177 & 0.04057 \\0.012 & 0.04057 & 0.1569\end{array}\right]  \left( kg \cdot m ^2\right)                       (f)
9.15
The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

To find the three principal moments of inertia, we may proceed as in Example 9.9, or simply enter the following lines in the MATLAB Command Window:

I = [ 0.1522 -0.03975 0.012
-0.03975 0.07177 0.04057
0.012 0.04057 0.1569 ];
[eigenVectors, eigenValues] = eig(IG)

to obtain

eigenVectors = 0.3469 -0.8482 -0.4003
0.8742 0.1378 0.4656
-0.3397 -0.5115 0.7893
eigenValues = 0.0402 0 0
0 0.1658 0
0 0 0.1747

Hence, the three principal moments of inertia and their principal directions are

\boxed{\begin{array}{ll}\lambda_1=0.04023  kg - m ^2 & e ^{(1)}=0.3469 \hat{ i }+0.8742 \hat{ j }-0.3397 \hat{ k } \\\lambda_2=0.1658  kg - m ^2 & e ^{(2)}=-0.8482 \hat{ i }+0.1378 \hat{ j }-0.5115 \hat{ k } \\\lambda_3=0.1747  kg - m ^2 & e ^{(3)}=-0.4003 \hat{ i }+0.4656 \hat{ j }+0.7893 \hat{ k } \\\end{array}}

Related Answered Questions

Question: 9.12

Verified Answer:

Since the comoving frame is rigidly attached to th...
Question: 9.10

Verified Answer:

From Example 9.5, \left[ I _A\right]=\left[...