Question 3.43: Calculate the value of R1 in the circuit given in Fig. 3.73 ......

Calculate the value of R_1 in the circuit given in Fig. 3.73 such that the circuit will resonate.

figure 3.73
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We know that at resonance the impedance of the circuit will be resistive only. We will calculate the value of impedance in a complex form and equate its imaginary part to zero to determine the value of R_1 .
Here, Z= R_1 + j6 and Z_2 = 10 – j4

\begin{aligned} Z & =\frac{Z_1 Z_2}{Z_1+Z_2}=\frac{\left(R_1+j 6\right)(10-j 4)}{\left(R_1+j 6\right)+(10-j 4)}=\frac{\left(R_1+j 6\right)(10-j 4)}{\left(R_1+10\right)+j(6-4)} \\ & =\frac{\left(10 R_1+24\right)+j\left(60-4 R_1\right)}{\left.\left[\left(R_1+10\right)+j 2\right]\left[R_1+10\right)-j 2\right]} \\ & =\frac{\left.\left[\left(10 R_1+24\right)+j\left(60-4 R_1\right)\right]\left[R_1+10\right)-j 2\right]}{\left.\left[\left(R_1+10\right)+j 2\right]\left[R_1+10\right)-j 2\right]} \\ & =\frac{\left[\left(10 R_1+24\right)\left(R_1+10\right)+2\left(60-4 R_1\right)\right]+j\left(60-4 R_1\right)\left(R_1+10\right)-j 2\left(10 R_1+24\right)}{\left(\left(R_1+10\right)^2+2\right)} \end{aligned}

During resonance, the imaginary part of Z will be zero.
Therfore,

\mathrm{j}\left(60-4 \mathrm{R}_1\right)\left(\mathrm{R}_1+10\right)-\mathrm{j} 2\left(10 \mathrm{R}_1+24\right)=0

or,                 60 R_1-4 R_1^2+600-40 R_1-20 R_1-48=0

or,               4 \mathrm{R}_1{ }^2=552

or,                \mathrm{R}_1^2=138

or,                \mathrm{R}_1=11.74 \Omega

Related Answered Questions