Calculate v_{o}\, (t) for the GG oscillator designed in Example 3.3.
In the oscillator of Example 3.3 (refer to Figure 3.13): C_{1}=95~\mathrm{pF},~C_{2}=190~\mathrm{pF}, L = 1 μH, R_{S}\,=\,302\Omega,\;R_{D}\,=\,1.25\;\mathrm{k}\Omega, I_{D}\,=\,4.5\,\mathrm{~mA},\,\,g_{m o}\,=6.86\mathrm{~mS}, and g_{m}=4.2~\mathrm{mS}. Therefore, from (3.95),
v_{o}=\left({\frac{\mathbf{C}_{1} + \mathbf{C}_{2}}{\mathbf{C}_{1}}}\right)V_{1}\cos\,\omega_{o}t (3.95)
G_{m}=\frac{C_{1}}{C_{1} + C_{2}}\frac{1}{\left(R_{s}+\frac{1}{g_{m}}\right)}=\frac{(95 \times 10^{-12})}{95 \times 10^{-12} + 190 \times 10^{-12}}\,\frac{1}{(302 + 238)}=2.5~\mathrm{mS}
From Figure 3.52, with
{\frac{G_{m}}{G_{m o}}}={\frac{2.5 \times 10^{-3}}{6.86 \times 10^{-3}}}=0.364
it follows that
V_{1}\approx0.7(-V_{P})=0.7(3.5)=2.45\mathrm{V}
Then,
V_{o}=n V_{1}=3(2.45)=7.3{\mathrm{V}}
or
v_{o}(t)=7.3\;\mathrm{cos}\;\omega_{o}t (3.96)
where the frequency of oscillation is 19.75 MHz.
The simulation for this example is shown in Figure 3.13. The output waveform varies between ±7.2V with a fundamental frequency of 19.95 Hz in good agreement with (3.96).